PRESCRIBING SCALAR CURVATURE ON S^{N}, PART 1: APRIORI ESTIMATES

CHIUN-CHUAN CHEN \& CHANG-SHOU LIN

Abstract

In this paper, we describe great details of the bubbling behavior for a sequence of solutions w_{i} of $$
L w_{i}+R_{i} w_{i}^{\frac{n+2}{n-2}}=0 \text { on } S^{n}
$$ where L is the conformal Laplacian operator of $\left(S^{n}, g_{0}\right)$ and $R_{i}=n(n-2)+$ $t_{i} \hat{R}, \hat{R} \in C^{1}\left(S^{n}\right)$. As $t_{i} \downarrow 0$, we prove among other things the location of blowup points, the spherical Harnack inequality near each blowup point and the asymptotic formulas for the interaction of different blowup points. This is the first step toward computing the topological degree for the nonlinear PDE.

1. Introduction

This is the first of a series of papers to study the problem of prescribing scalar curvature on S^{n}, the n-dimensional sphere with $n \geq 3$. Let g_{0} be the metric on S^{n} induced from the flat metric of \mathbb{R}^{n+1}, and R be a given C^{1} positive function on S^{n}. We are interested in the question whether there exists a metric g conformal to g_{0} such that R is the scalar curvature of g. Set $g=c_{n} w^{\frac{4}{n-2}} g_{0}$ for a suitable positive constant c_{n}. Then the question above is equivalent to finding a smooth positive solution of

$$
\begin{equation*}
L w+R w^{\frac{n+2}{n-2}}=0 \quad \text { on } \quad S^{n}, \tag{1.1}
\end{equation*}
$$

[^0]where $L=\Delta_{g_{0}}-\frac{n(n-2)}{4}$ is the conformal Laplacian operator of $\left(S^{n}, g_{0}\right)$. In general, the same question can be studied in any Riemannian manifold. For a compact Riemannian manifold and a constant R, this problem is called the Yamabe problem, which was solved in early 80s through the works by Trudinger [22], Aubin [1] and Schoen [19]. For a historic account, we refer the readers to Lee and Parker [14] and references therein. For the last three decades, Equation (1.1) has been continuing to be one of major subjects in nonlinear elliptic PDEs. For recent developments, see [1], [2], [3], [5], [6], [7], [8], [9], [10], [11], [12], [14], [15], [16], [17], [18], [19], [20], [21] and the references therein.

In [5], Chang-Gursky-Yang considered Equation (1.1) when $n=3$ and R is a positive Morse function on S^{3}. Under some nondegenerate conditions on the critical points of R, Chang-Gursky-Yang were able to obtain the apriori bound for positive solutions of Equation (1.1). Furthermore, they computed the Leray-Schauder degree d for Equation (1.1) by the following formula

$$
\begin{equation*}
d=-\left(1+\sum_{p \in \Gamma^{-}}(-1)^{\operatorname{ind}(p)}\right) \tag{1.2}
\end{equation*}
$$

where $\Gamma^{-}=\left\{p \in S^{3} \mid p\right.$ is a critical point of R satisfying $\left.\Delta_{g_{0}} R(p)<0\right\}$ and $\operatorname{ind}(p)$ is the Morse index of the Hessian of R at p. When the righthand side of (1.2) is assumed to be nonzero, the existence of positive solutions to Equation (1.1) was previously obtained by Bahri-Coron [3] and Schoen-Zhang [21]. However, the degree-counting formula (1.2) provides us more information about Equation (1.1). Particularly, it tells us when the concentration phenomenon for solutions of (1.1) could occur. Li [16] proved the apriori bound for Equation (1.1) on S^{4} and derived the formula for the Leray-Schauder degree by adding the effect of the interaction of multiple blow-up points. In this series of papers, we will generalize the results of [5] and [16] on S^{3} and S^{4} to higher dimensions.

As in our previous works [8], [9], it is more convenient for us to study (1.1) in \mathbb{R}^{n}. Without loss of generality, we may assume that the north pole of S^{n} is not a critical point of R. By using the stereographic projection π from S^{n} to \mathbb{R}^{n}, we set $u(x)=2^{\frac{n-2}{2}}\left(1+|x|^{2}\right)^{\frac{2-n}{2}} w\left(\pi^{-1}(x)\right)$
for $x \in \mathbb{R}^{n}$. Then $u(x)$ satisfies

$$
\begin{cases}\Delta u(x)+K(x) u^{\frac{n+2}{n-2}}=0 & \text { in } \mathbb{R}^{n}, \tag{1.3}\\ u(x)=O\left(|x|^{2-n}\right) & \text { at } \infty\end{cases}
$$

where $K(x)=R\left(\pi^{-1}(x)\right)$ for $x \in \mathbb{R}^{n}$.
When $K(x)$ is a constant, solutions of (1.1) can be classified completely. See [13] and [4]. For nonconstant $R(x)$, it is well-known that existence of solutions depends on K in a very subtle way. So, throughout the paper and [10], we always assume $0<a \leq K(x) \leq b$ and $K(x)$ has a finite set of critical points $\left\{q_{1}, \ldots, q_{N}\right\}$. Near each q_{j}, by Taylor's expansion, $K(x)$ can be written as

$$
K(x)=K\left(q_{j}\right)+Q_{j}\left(x-q_{j}\right)+R_{j}(x),
$$

where $Q_{j}(x)$ is a C^{1} homogeneous function of degree $\beta_{j}>1$, i.e., $Q_{j}(\lambda x)=\lambda^{\beta_{j}} Q_{j}(x)$ for $\lambda>0$ and R_{j} satisfies

$$
\lim _{x \rightarrow q_{j}}\left|x-q_{j}\right|^{-\beta_{j}} R_{j}(x)=\lim _{x \rightarrow q_{j}}\left|x-q_{j}\right|^{1-\beta_{j}}\left|\nabla R_{j}\right|(x)=0 .
$$

Here, β_{j} is not necessarily an integer. Of course, if $K(x) \in C^{\infty}$, then β_{j} must be an integer.
(K0) $\left|\nabla Q_{j}(x)\right| \geq c_{1}|x|^{\beta_{j}-1}$ for some $c_{1}>0$.
Let $U_{1}(x)=\left(1+|x|^{2}\right)^{-\frac{n-2}{2}}$.
(K1) At each critical point q_{j}, according to β_{j}, K satisfies one of the following conditions (i), (ii) and (iii):
(i) If $\beta_{j}<n, Q_{j}$ satisfies

$$
\begin{equation*}
\binom{\int_{\mathbb{R}^{n}} \nabla Q_{j}(x+\xi) U_{1}^{\frac{2 n}{n-2}}(x) d x}{\int_{\mathbb{R}^{n}} Q_{j}(x+\xi) U_{1}^{\frac{2 n}{n-2}}(x) d x} \neq\binom{ 0}{0} \tag{1.4}
\end{equation*}
$$

for any $\xi \in \mathbb{R}^{n}$.
(ii) If $\beta_{j}=n$, then

$$
\begin{equation*}
\int_{S^{n-1}} Q_{j}(x) d \sigma \neq 0 \tag{1.5}
\end{equation*}
$$

provided that there exists a vector $\xi \in \mathbb{R}^{n}$ satisfying

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q_{j}(x+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y=0 \tag{1.6}
\end{equation*}
$$

(iii) If $\beta_{j}>n$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left\langle x-q_{j}, \nabla K\right\rangle\left|x-q_{j}\right|^{-2 n} d x \neq 0 . \tag{1.7}
\end{equation*}
$$

We note that all integrals in (1.4)-(1.7) are $L^{1}\left(\mathbb{R}^{n}\right)$. In [5], [9] and [16], we knew that only part of critical points of K might be blowup points for certain solutions. Denote by Γ^{-}those critical points of K. More precisely:

Definition 1.1. Assume that K satisfies (K0). We say $q_{j} \in \Gamma^{-}$if and only if K satisfies one of the following conditions (i), (ii) and (iii) at q_{j} according to β_{j} :
(i) If $\beta_{j}<n$, there exists $\xi \in \mathbb{R}^{n}$ such that

$$
\left\{\begin{array}{l}
\int_{\mathbb{R}^{n}} \nabla Q_{j}(x+\xi) U_{1}^{\frac{2 n}{n-2}}(x) d x=0 \text { and } \tag{1.8}\\
\int_{\mathbb{R}^{n}} Q_{j}(x+\xi) U_{1}^{\frac{2 n}{n-2}}(x) d x<0 .
\end{array}\right.
$$

(ii) If $\beta_{j}=n$, there exists $\xi \in \mathbb{R}^{n}$ satisfying

$$
\left\{\begin{array}{l}
\int \nabla Q_{j}(x+\xi) U_{1}^{\frac{2 n}{n-2}}(x) d x=0 \text { and } \tag{1.9}\\
\int_{S^{n-1}} Q_{j}(x) d \sigma<0 .
\end{array}\right.
$$

(iii) If $\beta_{j}>n$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left\langle x-q_{j}, \nabla K\right\rangle\left|x-q_{j}\right|^{-2 n} d x<0 . \tag{1.10}
\end{equation*}
$$

Clearly, the notion $q_{j} \in \Gamma^{-}$and conditions (K0)-(K1) are invariant under the conformal transformations. We list several examples of Q to explain conditions (K0) and (K1).

Example 1.2.

1. $Q(y)=\sum_{j=1}^{n} a_{j} y_{j}^{2}$. Clearly $a_{j} \neq 0$ for all j iff (K0) holds. It is easy to see that $\xi=0$ is the only vector satisfying $\int_{\mathbb{R}^{n}} \nabla Q(y+$ छ) $U_{1}^{\frac{2 n}{n-2}}(y) d y=0$ and $\int_{\mathbb{R}^{n}} Q(y) U_{1}^{\frac{2 n}{n-2}}(y) d y=c_{n} \sum_{j=1}^{n} a_{j}$ for some positive constant c_{n}. Thus, (K0) and (K1) hold for a Morse function R on S^{n} satisfying $\Delta R(q) \neq 0$ for any critical point q of R. And $q \in \Gamma^{-}$iff $\Delta R(q)<0$.
2. $Q(y)=\sum_{j=1}^{n} a_{j} y_{j}^{3}, a_{j} \neq 0$, for $j=1,2, \ldots, n$. Clearly, no $\xi \in \mathbb{R}^{n}$ satisfies $\int_{\mathbb{R}^{n}} \nabla Q(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y=0$.
3. $Q(y)=y_{1}^{3}-\lambda y_{1} \sum_{j=2}^{n} y_{j}^{2}$. For $\lambda>\frac{3}{n-2}, Q(y)$ satisfies (K0) and (1.4). In fact, there are exactly two solutions $\xi= \pm \xi_{0}$ of $\int_{\mathbb{R}^{n}} \nabla Q(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y=0$, where $\xi_{0}=\left(\xi_{0,1}, 0, \ldots, 0\right)$ for some $\xi_{0,1}>0$. Direct computations show

$$
\int Q\left(y+\xi_{0}\right) U_{1}^{\frac{2 n}{n-2}}(y) d y=-\int Q\left(y-\xi_{0}\right) U_{1}^{\frac{2 n}{n-2}}(y) d y<0 .
$$

The main purpose of our work is to show that homogeneous functions $Q_{j}(x)$ for $q_{j} \in \Gamma^{-}$completely determine the structure of solutions of (1.1). Conditions (K0) and (K1) are already enough for our purpose. However, in order to make our presentation transparent here, each Q_{j} at $q_{j} \in \Gamma^{-}$is assumed to satisfy
(K2) For each $q_{j} \in \Gamma^{-}$with $\beta_{j}<n$, assume that

$$
\begin{align*}
\int_{\mathbb{R}^{n}} Q_{j}(x+\xi) U_{1}^{\frac{2 n}{n-2}}(x) d x<0 & \text { whenever } \tag{1.11}\\
\qquad & \int_{\mathbb{R}^{n}} \nabla Q_{j}(x+\xi) U_{1}^{\frac{2 n}{n-2}}(x) d x=0 .
\end{align*}
$$

To state our main theorem, we introduce the notion Λ^{-}. Assume (K0) and (K1). Let Λ^{-}be a collection of subsets of Γ^{-}such that a subset A of Γ^{-}is an element in Λ^{-}if and only if A satisfies the following conditions.

1. The number of the elements in $A \geq 2$.
2. For any two elements $q_{j} \neq q_{k}$ in A, the exponents β_{j} and β_{k} satisfies

$$
\frac{1}{\beta_{j}^{*}}+\frac{1}{\beta_{k}^{*}}>\frac{2}{n-2},
$$

where

$$
\begin{equation*}
\beta_{j}^{*}=\min \left(\beta_{j}, n\right) . \tag{1.12}
\end{equation*}
$$

Now we can state a special case of the Main Theorem we are going to prove in this paper and the subsequent one [10].

Theorem 1.1. Assume that K satisfies (K0) and (K1) such that β_{j} of Q_{j} at each critical point q_{j} in Γ^{-}satisfies $\beta_{j}>\frac{n-2}{2}$. In addition, we assume

$$
\begin{equation*}
\frac{1}{\beta_{j}^{*}}+\frac{1}{\beta_{k}^{*}} \neq \frac{2}{n-2} \tag{1.13}
\end{equation*}
$$

for $q_{j} \neq q_{k} \in \Gamma^{-}$. Then there exists a constant $c>0$ such that for any solution w of (1.1), we have

$$
\begin{equation*}
c^{-1} \leq w(y) \leq c \text { for } y \in S^{n} \tag{1.14}
\end{equation*}
$$

Let d denote the Leray-Schauder degree for the nonlinear map $w+$ $L^{-1}\left(R w^{\frac{n+2}{n-2}}\right)$ on $C^{2, \alpha}\left(S^{n}\right)$ with $0<\alpha<1$. Moreover, if (K2) holds additionally, then d satisfies

$$
\begin{equation*}
d=-\left[1+\sum_{j \in \Gamma^{-}}(-1)^{n+1} \operatorname{deg} F_{j}+\sum_{A \in \Lambda^{-}} \prod_{k \in A}\left((-1)^{n+1} \operatorname{deg} F_{k}\right)\right] \tag{1.15}
\end{equation*}
$$

where $\operatorname{deg} F_{j}$ denotes the standard topological degree of the mapping $F_{j}(x)=\nabla Q_{j}(x)$ from S^{n-1} to $\mathbb{R}^{n} \backslash\{0\}$, and Γ^{-}and Λ^{-}are defined as above.

We remark that the assumption $\beta_{j}>\frac{n-2}{2}$ in Theorem 1.1 is an also necessary condition for the existence of apriori bounds for solutions of Equation (1.1). In [11], we constructed blowing up solutions of (1.1) for some K satisfying (K0) and (K1) with $\beta_{j}<\frac{n-2}{2}$. To establish the apriori bound (1.14), the first step is to understand the details of blowing-up behavior of a sequence of solutions w_{i} near each blow-up point. In [8], [9] for a sequence of local solutions u_{i} of

$$
\begin{equation*}
\Delta u_{i}+K_{i}(x) u_{i}^{\frac{n+2}{n-2}}=0 \text { in } B_{2}=\{x| | x \mid<2\} \tag{1.16}
\end{equation*}
$$

where 0 is assumed the only blowup point, we have completely classified types of concentrations of u_{i} according to the flatness β of Q at the blowup point 0 . In particular, if $\frac{n-2}{2}<\beta<n$ then

$$
\begin{equation*}
u_{i}(x) \sim M_{i}^{-\gamma} \tag{1.17}
\end{equation*}
$$

in any compact set of $\bar{B}_{1} \backslash\{0\}$, where

$$
\gamma= \begin{cases}\frac{2 \beta}{n-2}-1 & \text { if } \beta<n-2 \\ 1 & \text { if } \beta \geq n-2\end{cases}
$$

and M_{i} is the maximum of u_{i} in \bar{B}_{1}. Hereafter, the notation $a_{i} \sim b_{i}$ for two sequences of positive numbers denotes that the ratio a_{i} / b_{i} is bounded above and below by two positive constants independent of i. Thus, $u_{i}(x) \downarrow 0$ in $C_{\text {loc }}^{2}\left(\bar{B}_{1} \backslash\{0\}\right)$. The result (1.17) is important when global solutions u_{i} of Equation (1.3) are considered, because those local maxima must satisfy certain rules according to (1.17). Together with the Pohozaev identity, we must have $\frac{1}{\beta_{j}^{*}}+\frac{1}{\beta_{k}^{*}}=\frac{2}{n-2}$ for some blowup points q_{j} and q_{k}. The apriori bound (1.14) then follows from this. We will give a complete proof of this result in Section 10 of the paper. When $n-2<\beta_{j}<n$ for any critical point q_{j}, the apriori bound was obtained previously in [15].

The degree counting formula (1.15) is more difficult to prove. Usually, there are two ways to establish the Leray-Schauder degree. One is to approach the nonlinear term in Equation (1.1) by subcritical exponents. Another one is to deform the curvature function R, e.g., replace R in Equation (1.1) by $R_{t}=1+t(R-1)$ for $0 \leq t \leq 1$. For the latter case, if one can show for any $\varepsilon>0$, solutions of (1.1) with R replaced by R_{t} are uniformly bounded for $\varepsilon \leq t \leq 1$, then the Leray-Schauder degree is the same for each $t \neq 0$. Thus, for our purpose, it suffices to compute the Leray-Schauder degree for small $t>0$. In the situation when t is small enough, the degree theory developed by Chang-Yang [6] can be applied very well. But, Chang-Yang was only able to prove the degree counting formulas (1.2) for the class of Morse functions. More seriously, as we will see, the degree formula in [6] did not count all possible solutions. Roughly speaking, their results only covered the case when solutions of (1.1) possess at most one blow-up point as t tends to zero. Later in this paper, we will prove that under assumptions (K0) and (K1), if a sequence of solutions w_{i} of (1.1) with $R_{t_{i}}$ as the scalar curvature blows up as $t_{i} \rightarrow 0$, then the number of blow-up points must be greater than one. Therefore, solutions obtained in [6] only consist of bounded solutions as $t \rightarrow 0$. We also remark that if the degree β_{j} for each $q_{j} \in \Gamma^{-}$is no less than $n-2$, then any sequence of solutions of (1.1) with R replaced by $R_{t_{i}}$ remains uniformly bounded as $t_{i} \rightarrow 0$. In this case, Λ^{-}is an empty set and the degree-counting formula (1.15) reduces to $d=-\left[1+\sum_{j \in \Gamma^{-}}(-1)^{n+1} \operatorname{deg} F_{j}\right]$. When R is a Morse function on S^{3}, this is the degree counting (1.2).

In this paper, we consider a sequence of solutions u_{i} of (1.3) with curvature functions K_{i} set by

$$
\begin{equation*}
K_{i}(x)=n(n-2)+t_{i} \hat{K}(x) \tag{1.18}
\end{equation*}
$$

where we assume $t_{i} \rightarrow 0$. Here, \hat{K} is a C^{1} function satisfying the nondegenerate conditions (K0)-(K1). Solutions u_{i} are always assumed to blow up at some points of \mathbb{R}^{n}. The main purpose of this article is to study blowup behavior of u_{i} near a blowup point and to study the effect due to the interaction between different blowup points. This is the first step for computing the degree-counting formula. Based on these, we will construct all possible blowup solutions of (1.1) as $t_{i} \downarrow 0$ in [10] and then we are able to compute the "local degree" for each blowup solution. In [10], we will give a complete proof of the degree formula. From the analytic point of view, the main difference between this paper and [9] are: First, we consider the degenerate case $\lim _{i \rightarrow \infty} K_{i}=$ constant here, which can not be covered by the results for nondegenerate $\lim _{i \rightarrow \infty} K_{i}$ in [9]. Second, we allow the number β_{j} defined in (K0) to be greater than or equal to n in this paper, while we assume $1<\beta_{j} \leq n-2$ in [9]. Third, we also consider the interaction between different blow-up points here, while we mainly study local behavior near a blow-up point in [9].

The first interesting question concerning a sequence of blowup solutions is to find the location of blowing up points. A general result states that if K_{i} converges to K in C^{1}, then any blowup point must be a critical point (see [21], [16], [8]). Obviously, this result could not be of any help for our present situation because the limit function of K_{i} is identically a constant. Nevertheless, by using more delicate estimates than the nondegenerate case, we are still able to prove the following.

Theorem 1.2. Suppose \hat{K} satisfies (K0) and u_{i} is a sequence of solutions of (1.3) with $K=K_{i}$ given in (1.18). Then $\nabla \hat{K}(q)=0$ for any blowup point q of u_{i}.

Throughout the paper, we let $\left\{q_{1}, \ldots, q_{m}\right\}$ be the set of blowup points for $\left\{u_{i}\right\}$, and β_{j} be the degree of Q_{j} of \hat{K} at q_{j}. To analyze the blowup behavior of u_{i} more accurately, the important step is to show the isolatedness of blowup points, that is, to prove the spherical Harnack inequality (1.19):

$$
\begin{equation*}
\max _{\left|x-q_{j}\right|=r} u_{i}(x) \leq c \min _{\left|x-q_{j}\right|=r} u_{i}(x) \text { for } 0 \leq r \leq r_{0} . \tag{1.19}
\end{equation*}
$$

For nondegenerate case, the spherical Harnack inequality (1.19) was proved even for local solutions. See [8], [9] of the reference. For the degenerate case, we do not know whether the spherical Harnack inequality holds or not for local solutions. In Section 4, we study the
situation when it fails. Due to the analysis there and the effect of interactions of different blowup points, nevertheless, the spherical Harnack inequaltiy is proved for global solutions.

Theorem 1.3. Suppose that \hat{K} satisfies (K0) and (K1). Assume $\beta_{j} \geq \frac{2(n-2)}{n}$ for each $q_{j} \in \Gamma^{-}$. Then any blowup point is isolated. Furthermore, if $\beta_{j}<n+1$ at a blowup point q_{j}, then u_{i} satisfies

$$
\begin{equation*}
u_{i}(x) \leq c\left|x-q_{j}\right|^{-\frac{n-2}{2}} \tag{1.20}
\end{equation*}
$$

for $\left|x-q_{j}\right| \leq \delta_{0}$ with some positive constants δ_{0} and c.
By the theory of elliptic equations and the scaling property of Equation (1.3), inequality (1.20) implies (1.19). Hence, we also call (1.20) the spherical Harnack inequality. We note that in Theorem 1.3, (K1) is required only for those q_{j} where $\beta_{j}<n-2$.

For each blowup point q_{j}, we let $M_{i, j}$ and $q_{i, j}$ denote the local maximum and a local maximum point of u_{i} near q_{j}, that is,

$$
\begin{equation*}
M_{i, j}=u_{i}\left(q_{i, j}\right)=\max _{\left|x-q_{j}\right| \leq \delta_{0}} u_{i}(x), \tag{1.21}
\end{equation*}
$$

where δ_{0} is a small positive number such that the distance of q_{j} and q_{k} are greater than $2 \delta_{0}$. The following theorem is concerned with the asymptotic relations of $M_{i, j}$ for different blowup points. Let l denote the nonnegative positive integer such that q_{1}, \ldots, q_{l} are simple blowup points and q_{l+1}, \ldots, q_{m} are not simple blowup points. For the notion of simple blowup points, we refer the reader to [8], [9] or Section 2 of this paper.

Theorem 1.4. Assume that \hat{K} satisfies (K0) and (K1) and assume β of $Q>\frac{n-2}{2}$ at any $q \in \Gamma^{-}$. Let $\left\{q_{j}\right\}_{j=1}^{m}$ be the set of blowup points for u_{i}, and $M_{i, j}, q_{i, j}$ and l be defined as above. Then $m \geq 2, l \geq 1$ and $\beta_{1}=\ldots=\beta_{l}>\beta_{j}$ for $l+1 \leq j \leq m$. Furthemore, the following conclusions hold:
(i) We have $q_{j} \in \Gamma^{-}$for $1 \leq j \leq m$ and there exists a constant $c>0$ such that

$$
\left|q_{i, j}-q_{j}\right| \leq c \begin{cases}M_{i, j}^{-\frac{2}{n-2}} & \text { if } \beta_{j}<n+1 \tag{1.22}\\ M_{i, j}^{-\frac{2}{n-2}}\left(\log M_{i, j}\right)^{\frac{1}{n}} & \text { if } \beta_{j}=n+1, \\ M_{i, j}^{-\frac{2}{n-2} \frac{n}{\beta_{j}-1}} & \text { if } \beta_{j}>n+1\end{cases}
$$

Moreover, the limit vector $\xi=\lim _{i \rightarrow+\infty} M_{i, j}^{\frac{2}{n-2}}\left(q_{i, j}-q_{j}\right)$ satisfies (1.8) if $\beta_{j}<n$, and satisfies (1.6) if $n \leq \beta_{j}<n+1$
(ii) Assume that $l=1$. We index q_{j} according to the ordering of $\beta_{j}: \beta_{1}>\beta_{2}=\ldots=\beta_{l_{1}}>\beta_{l_{1}+1} \geq \ldots \geq \beta_{m}$ for some positive integer l_{1}. Then

$$
\begin{equation*}
\frac{1}{\beta_{1}^{*}}+\frac{1}{\beta_{2}}>\frac{2}{n-2} \tag{1.23}
\end{equation*}
$$

$M_{i, j}$ satisfies

$$
\left.\begin{array}{cc}
t_{i} M_{i, 1}^{-\frac{2 \beta_{1}^{*}}{n-2}} & \text { if } \beta_{1} \neq n \tag{1.24}\\
t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} \log M_{i, 1} & \text { if } \beta_{1}=n
\end{array}\right\}=(1+o(1)) \sum_{j=2}^{l_{1}} \eta_{1, j} M_{i, j}^{-1} M_{i, 1}^{-1}
$$

and

$$
\begin{equation*}
t_{i} M_{i, j}^{\frac{-2 \beta_{j}}{n-2}}=(1+o(1)) \eta_{j, 1} M_{i, j}^{-1} M_{i, 1}^{-1} \quad \text { for } 2 \leq j \leq m \tag{1.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{j, k}=\frac{n(n-2)\left|S^{n-1}\right|\left|q_{j}-q_{k}\right|^{-n+2}}{\left|b_{j}\right|} \tag{1.26}
\end{equation*}
$$

and

$$
b_{j}=\left\{\begin{array}{cl}
\beta_{j} \int_{\mathbb{R}^{n}} Q_{j}(x+\xi) U_{1}^{\frac{2 n}{n-2}}(x) d x & \tag{1.27}\\
\text { with } \xi=\lim _{i \rightarrow+\infty} M_{i, j}\left(q_{i, j}-q_{j}\right) & \text { if } \beta_{j}<n \\
n \int_{S^{n-1}} Q_{j}(x) d \sigma & \text { if } \beta_{j}=n \\
\int_{\mathbb{R}^{n}}\left\langle x-q_{j}, \nabla K\right\rangle\left|x-q_{j}\right|^{-2 n} d x & \text { if } \beta_{j}>n
\end{array}\right.
$$

(iii) Assume $l \geq 2$. Then $\beta_{1}=\ldots=\beta_{l}<n-2$ and $M_{i, j}$ satisfies
(1.28) $t_{i} M_{i, j}^{-\frac{2 \beta_{1}}{n-2}}=(1+o(1)) \sum_{k=1, k \neq j}^{l} \eta_{j, k} M_{i, j}^{-1} M_{i, k}^{-1} \quad$ for $1 \leq j \leq l$,
and
(1.29) $t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}=(1+o(1)) \sum_{k=1}^{l} \eta_{j, k} M_{i, k}^{-1} M_{i, j}^{-1} \quad$ for $l+1 \leq j \leq m$.

Theorem 1.4 gives us rather complete information about blowup solutions, that is, the local maxima of blowup solutions must satisfy the necessary conditions (1.24) and (1.25), or (1.28) and (1.29). Conversely, in [10] we will construct such blowup solutions satisfying these relations and compute the contribution of these solutions to the Leray-Schauder degree of Equation (1.1). We note that the third term of the right hand side of (1.15) corresponds to the effect of multiple blowup points.

The paper is organized as follows: In Section 2-Section 9, we consider the degenerate case for Equation (1.3), that is, $K_{i}(x)=n(n-2)+$ $t_{i} \hat{K}(x)$ with $t_{i} \downarrow 0$. In Section 2, main results for local solutions are stated and their proofs are given in the subsequent sections. There are two main issues in Section 2. The first one is the quantity L_{i}, which is associated with each "good" local maximum point of solutions. The quantity L_{i} is introduced in Sections 2 and will play an important role because it decides how large of the range where u_{i} behaves "simply". We will give its proof in Sections 3 and this is the major step where the method of moving planes is applied. Another important issue in Section 2 is the spherical Harnack inequality (1.20). We will see that when the flatness $\beta \geq \frac{n-2}{2}$, the spherical Harnack inequality always holds. See Theorem 2.4. The case $\beta<\frac{n-2}{2}$ is the difficult one for our analysis, even when the Harnack inequality holds. In the general principle, we can obtain the local bubbling informations through the Pohozaev identities. However, we have to compute each term in the identity very accurately and the Harnack inequality itself is not enough for us to achieve this goal. We need a sharper estimate for the error term of the solution and the approximation bubbles. This is a very delicate analysis because in general the solutions might lose the energy more than one bubble. In Section 5 , we show that a method of ODE surprisingly gives us fine estimates when the spherical Harnack inequality is validated. Together with suitably chosen comparision functions, we complete the proof of our desired estimate in Sections 5. See Theorem 2.7. This is one of two difficult jobs in the paper. These estimates for the error term are required in the proof of Lemma 7.1 in Section 7. Lemma 7.1 exactly tells us how, through the Pohozaev identities, the local informations can be put together to obtain more global one. Section 4 will deal with the situation when the spherical Harnack inequaltiy (2.19) fails. Here, we employ a technique of Schoen to localize blowup points. Combined with the method of moving planes developed in Section 3, this provides a clear picture for the case when the Harnack inequality does not hold. Based on the analysis in Section 4 and Lemma 7.1, Theorem 1.3 and

Theorem 1.4 are proved in Section 8 and Section 9, respectively. We will prove Theorem 1.2 in Section 6 as a direct consequence of results in Section 2. Finally, we will prove the apriori bound of Theorem 1.1 in Section 10.

Acknowledgement

Part of this work has been done while both authors visited the National Center for Theoretical Sciences of NSC in Taiwan. We want to thank NCTS for the warm hospitality and the stimulating environment.

2. Estimates for local solutions

For the convenience of the reader, we briefly review some of previous results from [8] and [9], which would be useful later. Let u_{i} be a solution of

$$
\begin{equation*}
\Delta u_{i}+K_{i}(x) u_{i}^{\frac{n+2}{n-2}}=0 \text { in } \Omega, \tag{2.1}
\end{equation*}
$$

where Ω is an open set in \mathbb{R}^{n}. Let x_{0} be a blowup point. Following Schoen's idea, a blowup point x_{0} is called simple if there exists a constant $c>0$ and a sequence of local maximum points x_{i} of u_{i} such that

$$
\begin{equation*}
x_{0}=\lim _{i \rightarrow+\infty} x_{i}, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{i}\left(x_{i}+x\right) \leq c U_{\lambda_{i}}(x) \text { for }|x| \leq r_{0} \tag{2.3}
\end{equation*}
$$

where $r_{0}>0$ is independent of $i, \lambda_{i}=u_{i}\left(x_{i}\right)^{-\frac{2}{n-2}}$ tends to zero as $i \rightarrow+\infty$ and

$$
\begin{equation*}
U_{\lambda}(x)=\left(\frac{\lambda}{\lambda^{2}+|x|^{2}}\right)^{\frac{n-2}{2}} \quad \text { for } x \in \mathbb{R}^{n} \tag{2.4}
\end{equation*}
$$

For any $\lambda>0$, by elementary calculation, $U_{\lambda}(x)$ satisfies

$$
\Delta U_{\lambda}+n(n-2) U_{\lambda}^{\frac{n+2}{n-2}}(x)=0 \text { in } \mathbb{R}^{n}
$$

We note that the definition of a simple blowup point is different from the original one given by Schoen. However, it is not difficult to prove that these two definitions are equivalent.

Instead of (2.3), the inequality

$$
\begin{equation*}
u_{i}\left(x_{i}+x\right) \leq c u_{i}\left(x_{i}\right)^{-1}|x|^{-n+2} \tag{2.5}
\end{equation*}
$$

is often used when x_{0} is a simple blowup point. Also, by (2.4), we have

$$
\begin{equation*}
U_{\lambda}(x) \leq(2|x|)^{-\frac{n-2}{2}} \text { for } x \neq 0 \tag{2.6}
\end{equation*}
$$

which implies that if x_{0} is a simple blowup point, then

$$
\begin{equation*}
u_{i}\left(x_{i}+x\right) \leq c|x|^{-\frac{n-2}{2}} \text { for }|x| \leq r_{0} \tag{2.7}
\end{equation*}
$$

A blowup point x_{0} is called isolated if (2.7) holds for some c and $r_{0}>0$. It is easy to see a simple blowup point must be isolated. The inequality (2.7) is important because it implies that the Harnack inequality holds for each sphere with center x_{i}, i.e., there exists a positive constant $c>0$ such that

$$
\begin{equation*}
\max _{\left|x-x_{i}\right|=r} u_{i}(x) \leq c \min _{\left|x-x_{i}\right|=r} u_{i}(x) \tag{2.8}
\end{equation*}
$$

for $0 \leq r \leq r_{0}$.
Suppose that x_{0} is a blowup point of u_{i}. Theorem 1.3 in [8] states that x_{0} is a simple blowup point if $K_{i}(x) \rightarrow K(x)$ in C^{1} and K_{i} satisfies for some constant c either (i) $\left|\nabla K_{i}(x)\right| \leq c$ if $n=3$ or (ii)

$$
\begin{equation*}
\left|\nabla^{j} K_{i}(x)\right| \leq c\left|\nabla K_{i}(x)\right|^{\frac{\beta-j}{\beta-1}} \tag{2.9}
\end{equation*}
$$

if $n \geq 4$ in a neighborhood of x_{0} for $1 \leq j \leq \beta=n-2$. Also see [15] for the same conclusion when global solutions are considered. We make some remarks here. First, if $K_{j}=n(n-2)+t_{i} \hat{K}$ with \hat{K} satisfying (2.9), then (2.9) holds for K_{i} also with the same constant c. Thus Theorem 1.3 in [8] can apply to our case. Second, if \hat{K} is smooth and $\left|\nabla \hat{K}\left(x_{0}\right)\right| \geq c>0$, then obviously condition (2.9) holds for K_{i} also. Actually, from the first step of the proof of Theorem 1.3 in [8], the smoothness assumption of \hat{K} can be removed if x_{0} is not a critical point of \hat{K}. Even when x_{0} is a critical point, it is not necessary to assume that \hat{K} is smooth. In this case, condition (2.9) can be replaced by

$$
\begin{equation*}
c_{1}\left|x-x_{0}\right|^{\beta-1} \leq|\nabla \hat{K}(x)| \leq c_{2}\left|x-x_{0}\right|^{\beta-1} \tag{2.10}
\end{equation*}
$$

in a neighborhood of x_{0} for some constants
$c_{2}>c_{1}$ and $\beta>1$.

Thus, Theorem 1.3 of [8] can be restated as follows:
Theorem A. Let u_{i} be a solutions of (2.1) with $K_{i}=n(n-2)+t_{i} \hat{K}$ and $x_{0} \in \Omega$ be a blowup point of u_{i}. Assume that either x_{0} is not a critical point of \hat{K} or x_{0} is a critical point of \hat{K} and \hat{K} satisfies (2.10) for some $\beta \geq n-2$. Then x_{0} is a simple blowup point.

Obviously, if x_{0} is a simple blow-up point, then there are no blowup points in a small neighborhood of x_{0}. If we further assume that \hat{K} has a discrete set of critical points in Ω, then by Theorem A, u_{i} has a discrete set of blowup points at most. Hence, throughout Section 2 to Section 5, we always assume that u_{i} is a solution of

$$
\left\{\begin{array}{c}
\Delta u_{i}+K_{i}(x) u_{i}^{\frac{n+2}{n-2}}(x)=0 \text { on } \bar{B}_{2} \backslash\{0\}, \tag{2.11}\\
u_{i}(x) \text { is uniformly bounded in any compact } \\
\text { set of } \bar{B}_{2} \backslash\{0\},
\end{array}\right.
$$

where $B_{2}=\{x:|x|<2\}$, and $K_{i}(x)=n(n-2)+t_{i} \hat{K}$ where \hat{K} satisfies (2.10) with $x_{0}=0$ for $x \in \bar{B}_{2}$ and some $\beta \geq 1$. Here, solutions u_{i} is assumed to blow up at 0 . Let \hat{M}_{i} denote the maximum of u_{i} and x_{i} be a maximum point of u_{i}, i.e.,

$$
\begin{equation*}
\hat{M}_{i}=u_{i}\left(x_{i}\right)=\max _{|x| \leq 2} u_{i}(x) \rightarrow+\infty \tag{2.12}
\end{equation*}
$$

as $i \rightarrow+\infty$. Clearly $x_{i} \rightarrow 0$. If $\beta=1$ or $\beta \geq n-2$, by Theorem A, (2.3) holds for some constant $c>0$. When $1<\beta<n-2$, the situation is more complicated as shown in [9].

A solution u_{i} may have local maximum points beside x_{i}. Let z_{i} be any local maximum point of u_{i} with $u_{i}\left(z_{i}\right) \rightarrow+\infty$. Then by assumption (2.11), $\lim _{i \rightarrow \infty} z_{i}=0$. Let $v_{i}(y)$ be the scaled function defined by

$$
\begin{equation*}
v_{i}(y)=M_{i}^{-1} u_{i}\left(z_{i}+M_{i}^{-\frac{2}{n-2}} y\right) \text { with } M_{i}=u_{i}\left(z_{i}\right) \tag{2.13}
\end{equation*}
$$

Obviously, $v_{i}(y)$ is well-defined for $|y| \leq M_{i}^{\frac{2}{n-2}}$ when i is large. In the paper, we will always reduce the arguments to the situation when

$$
\begin{align*}
& v_{i}(y) \text { is uniformly bounded in any compact set of } \\
& \mathbb{R}^{n} \text {, that is, for any } \varepsilon>0, \text { there exists a sequence of } \tag{2.14}\\
& R_{i} \rightarrow+\infty \text { such that }
\end{align*}
$$

$$
\left|v_{i}(y)-U_{1}(y)\right| \leq \varepsilon U_{1}(y) \text { for }|y| \leq R_{i}
$$

In this case, by passing to a subsequence, $v_{i}(y)$ converges to $U_{1}(y)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$, where $U_{1}(y)$ is given in (2.4) with $\lambda=1$.

For such "good" local maximum point z_{i}, we set

$$
\begin{equation*}
L_{i}\left(z_{i}\right)=\min \left[\left(t_{i}^{-1} u_{i}\left(z_{i}\right)^{\frac{2}{n-2}}\left|z_{i}\right|^{1-\beta}\right)^{\frac{1}{n-2}},\left(t_{i}^{-1} u_{i}\left(z_{i}\right)^{\frac{2 \hat{\beta}}{n-2}}\right)^{\frac{1}{n-2}}\right] \tag{2.15}
\end{equation*}
$$

where $\hat{\beta}=\beta$ if $\beta<n$ and $\hat{\beta}$ is any positive number in $(n-1, n)$ if $\beta \geq n$. One of the main themes for local solutions is to know if the scaled vector $M_{i}^{\frac{2}{n-2}} z_{i}$ is bounded. This is closely related to the quantity $L_{i}\left(z_{i}\right)$. To see this, let us assume $\beta<n$ for simplicity. In this case, if $\lim _{i \rightarrow+\infty} u_{i}\left(z_{i}\right)\left|z_{i}\right|^{\frac{n-2}{2}}=+\infty$, then

$$
u_{i}\left(z_{i}\right)^{\frac{2}{n-2}}\left|z_{i}\right|^{1-\beta}=\left(u_{i}\left(z_{i}\right)^{\frac{2}{n-2}}\left|z_{i}\right|\right)^{1-\beta} u_{i}\left(z_{i}\right)^{\frac{2 \beta}{n-2}}=o(1) u_{i}\left(z_{i}\right)^{\frac{2 \beta}{n-2}}
$$

and

$$
L_{i}\left(z_{i}\right)=\left(t_{i}^{-1} u_{i}\left(z_{i}\right)^{\frac{2}{n-2}}\left|z_{i}\right|^{1-\beta}\right)^{\frac{1}{n-2}} .
$$

On the other hand, if

$$
\lim _{i \rightarrow+\infty} u_{i}\left(z_{i}\right)\left|z_{i}\right|^{\frac{n-2}{2}}<+\infty
$$

then it is easy to see

$$
L_{i}\left(z_{i}\right) \sim\left(t_{i}^{-1} u_{i}\left(z_{i}\right)^{\frac{2 \beta}{n-2}}\right)^{\frac{1}{n-2}} .
$$

The quantity $L_{i}\left(z_{i}\right)$ plays an important role for us to understand the bubbling profile of u_{i}. Our first result concerns with $L_{i}\left(x_{i}\right)$ and the simple blowup at 0 . We recall x_{i} is a maximum point of u_{i} and $\hat{M}_{i}=u_{i}\left(x_{i}\right)$ is the maximum of u_{i}. See (2.12).

Theorem 2.1. Suppose u_{i} is a solution of (2.11) and \hat{K} satisfies (2.10) for some $\beta \geq 1$. Assume (1.4) in addition if $\beta<n-2$. Then after passing to a subsequence, 0 is a simple blow-up point if and only if there exists a constant $c>0$ independent of i such that

$$
\hat{M}_{i}^{\frac{2}{n-2}} \leq c L_{i}\left(x_{i}\right)
$$

for all i.
An interesting case is when the ratio $\hat{M}_{i}^{-\frac{2}{n-2}} L\left(x_{i}\right)$ tends to $+\infty$ as $i \rightarrow+\infty$. If u_{i} is a global solution of (1.3), by applying the method of
moving planes, we can prove that 0 is the only simple blowup point. See (6.8).

On the other hand, when the ratio $\hat{M}_{i}^{-\frac{2}{n-2}} L\left(x_{i}\right)$ is bounded, we have the following result.

Theorem 2.2. Let u_{i} and \hat{K} satisfy the assumptions of Theorem 2.1 and let x_{i}, \hat{M}_{i} and $L_{i}\left(x_{i}\right)$ be defined in (2.12) and (2.15), respectively. Suppose that there is $c>0$ such that

$$
L_{i}\left(x_{i}\right) \leq c \hat{M}_{i}^{\frac{2}{n-2}}
$$

then $\hat{M}_{i}\left|x_{i}\right|^{\frac{n-2}{2}}$ is bounded and $\beta<n-2$. Furthermore, if assume in addition that \hat{K} satisfies (K0) with Q being the homogeneous function and $\lim _{i \rightarrow+\infty} \xi_{i}=\xi$ exists with $\xi_{i}=\hat{M}_{i}^{\frac{2}{n-2}} x_{i}$, then ξ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q(x+\xi) U_{1}^{\frac{2 n}{n-2}}(x) d x=0 \tag{2.16}
\end{equation*}
$$

The following consequence of Theorem 2.2 is important when we come to determine the position of blowup points for global solutions of (1.3).

Corollary 2.3. Let u_{i} and K_{i} satisfy the assumptions of Theorem 2.1. Assume that either $\nabla \hat{K}(0) \neq 0$ or $\nabla \hat{K}(0)=0$ with $\beta \geq n-2$, then $\lim _{i \rightarrow+\infty} L_{i}\left(x_{i}\right) \hat{M}_{i}^{-\frac{2}{n-2}}=+\infty$.

Both proofs of Theorem 2.1 and 2.2 are given in Section 3, where the application of the reflection method are discussed. By Theorem A, the flatness β of \hat{K} at 0 determines the bubbling behavior of u_{i}. Conventionally, u_{i} is said to lose the energy of one bubble at 0 if u_{i} converges to 0 in $C_{\text {loc }}^{1}\left(B_{2} \backslash\{0\}\right)$ and

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \int_{|x| \leq 1} u_{i}^{\frac{2 n}{n-2}}(x) d x=\left(\frac{S_{n}}{n(n-2)}\right)^{\frac{n}{2}} \tag{2.17}
\end{equation*}
$$

where S_{n} is the Sobolev best constant. Clearly, if u_{i} blows up at 0 simply, then u_{i} lost one bubble.

Theorem 2.4. Assume that \hat{K} satisfies (K0) and (K1) at 0 with $\frac{n-2}{2} \leq \beta$, and u_{i} is a solution satisfying (2.11). Then u_{i} loses the energy
of only one bubble at 0 . Suppose in addition that $\varlimsup_{i \rightarrow+\infty} L_{i}\left(x_{i}\right) \hat{M}_{i}^{-\frac{2}{n-2}}<$ $+\infty$. Then there exists a constant $c>0$ such that

$$
\begin{equation*}
u_{i}(x) \leq c|x|^{\frac{2-n}{2}} \quad \text { for }|x| \leq 1 \tag{2.18}
\end{equation*}
$$

Set $\xi_{i}=\hat{M}_{i}^{\frac{2}{n-2}} x_{i}$. Then after passing to a subsequence, the limit $\xi=$ $\lim _{i \rightarrow+\infty} \xi_{i}$ satisfies (1.8).

When $\beta<\frac{n-2}{2}$, it is possible that (2.18) does not hold and it is also possible that u_{i} loses energy of more than one bubble even (2.18) holds. We first consider the case when inequality (2.18) does not hold. There are two alternatives in this case.

Theorem 2.5. Assume that \hat{K} satisfies (K0) and (K1) at 0, and u_{i} is a solution of (2.11). Suppose

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \sup \left(u_{i}(x)|x|^{\frac{n-2}{2}}\right)=+\infty . \tag{2.19}
\end{equation*}
$$

Then one of the followings holds:
(i) The origin is a simple blowup point and consequently, an isolated blowup point. More precisely, we have

$$
\left\{\begin{array}{l}
u_{i}\left(x_{i}+x\right) \leq c U_{\lambda_{i}}(x) \text { for }|x| \leq 1, \text { and } \tag{2.20}\\
\lim _{i \rightarrow+\infty} \hat{M}_{i}\left|x_{i}\right|^{\frac{n-2}{2}}=+\infty
\end{array}\right.
$$

where $\lambda_{i}=\hat{M}_{i}^{-\frac{2}{n-2}}$.
(ii) The origin is not a simple blowup point and is not an isolated blowup point. In this case, we have $\beta<\frac{n-2}{2}$ and there exists a local maximum point z_{i} of u_{i} satisfying

$$
\begin{equation*}
u_{i}\left(z_{i}\right)\left|z_{i}\right|^{\frac{n-2}{2}} \rightarrow \infty \text { and } L_{i}\left(z_{i}\right) u_{i}\left(z_{i}\right)^{-\frac{n-2}{2}} \rightarrow \infty \text { as } i \rightarrow+\infty \tag{2.21}
\end{equation*}
$$

such that for any $\delta>0, u_{i}(x)$ is a simple blowup with center z_{i} for $x \notin B\left(0, \delta\left|z_{i}\right|\right)$, i.e.,

$$
\begin{equation*}
u_{i}(x) \leq c U_{\lambda_{i}}\left(x-z_{i}\right) \tag{2.22}
\end{equation*}
$$

for $|x| \geq \delta\left|z_{i}\right|$, where $\lambda_{i}=u_{i}\left(z_{i}\right)^{-\frac{2}{n-2}}$. Also, for $x \notin B\left(z_{i}, \delta\left|z_{i}\right|\right)$, we have

$$
\begin{equation*}
u_{i}(x)|x|^{\frac{n-2}{2}} \leq c \tag{2.23}
\end{equation*}
$$

with $c=c(\delta)$ independent of i. Moreover, $u_{i}\left(z_{i}\right)=o(1) \hat{M}_{i}$, where $o(1)$ tends to 0 as $i \rightarrow+\infty$ and $\hat{M}_{i}=\max _{|x| \leq 2} u_{i}(x)$.

Remark 2.6. Two consequences follow from Theorem 2.5. First, since (2.22) implies

$$
\begin{equation*}
\min _{|x|=1} u_{i}(x) \sim u_{i}\left(z_{i}\right)^{-1} \tag{2.24}
\end{equation*}
$$

the spherical Harnack inequality (2.18) holds if $u_{i}(x) \geq c>0$ on \bar{B}_{2} for some c independent of i. Second, by (2.21),

$$
\lim _{i \rightarrow+\infty} L_{i}\left(z_{i}\right) u_{i}\left(z_{i}\right)^{-\frac{n-2}{2}}=+\infty
$$

We will see later that this implies if u_{i} is a sequence of global solutions, then the number of the type of blowup points described in (ii) of Theorem 2.5 is at most one. See (6.8). By using this fact, we then are able to apply Lemma 7.1 to get rid of the blowup point of the type of behavior in case (ii) of Theorem 2.5. This is indeed Theorem 1.3.

When u_{i} converges to zero in $C_{\mathrm{loc}}^{1}\left(\bar{B}_{2} \backslash\{0\}\right)$, we say u_{i} loses energy of more than one bubble near 0 if

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \int_{|x| \leq 1} u_{i}^{\frac{2 n}{n-2}}(x) d x>\left(\frac{S_{n}}{n(n-2)}\right)^{\frac{n}{2}} \tag{2.25}
\end{equation*}
$$

In this case, we have $\beta<\frac{n-2}{2}$ by Theorem A and Theorem 2.4. It is easy to see the blowup described in (ii) of Theorem 2.5 belongs to this case. Actually, when $\beta<\frac{n-2}{2}$, it is possible for u_{i} to lose infinite energy. See [11] for the existence for such solutions.

To estimate u_{i} more accurately when it satisfies (2.18) and loses energy of more than one bubble, let

$$
\begin{equation*}
\bar{u}_{i}(r)=\frac{1}{\left|\partial B_{r}\right|} \int_{|x|=r} u_{i} d \sigma \tag{2.26}
\end{equation*}
$$

be the spherical average of u_{i}, and

$$
\begin{equation*}
w_{i}(s)=\bar{u}_{i}(r) r^{\frac{n-2}{2}} \quad \text { with } r=e^{s} \tag{2.27}
\end{equation*}
$$

Obviously, $w_{i}(s)$ is well-defined for $s \leq 0$. Since 0 is a blowup point, w_{i} has at least one maximum point. Let $s_{i} \leq 0$ be the local maximum point of w_{i}, which is nearest to zero. Set

$$
\begin{gather*}
L_{i}=\left(t_{i}^{-1} M_{i}^{\frac{2 \beta}{n-2}}\right)^{\frac{1}{n-2}}, \tag{2.29}\\
R_{i}=L_{i}^{\gamma}, \gamma=\frac{1}{1-\frac{2 \beta}{n-2}}, \text { and } \tag{2.30}\\
\widetilde{u}_{i}=M_{i}^{-1} u_{i}\left(M_{i}^{\frac{-2}{n-2}} x\right) \tag{2.31}
\end{gather*}
$$

Then we have the following estimates:
Theorem 2.7. Suppose that \hat{K} satisfies (K0) and (K1) at 0 with $1<\beta<\frac{n-2}{2}$, and u_{i} is a solution of (2.11) which converges uniformly to zero in any compact set of $\bar{B}_{2} \backslash\{0\}$ and satisfies (2.18) and (2.25). Define $w_{i}, s_{i}, M_{i}, L_{i}, R_{i}$ and \widetilde{u}_{i} as above. Then $\lim _{i \rightarrow+\infty} M_{i}=+\infty$ and there are $c>0, a_{i} \rightarrow 1, z_{i} \in \mathbb{R}^{n}$ and $\lambda_{i}>0$ such that the following hold:
(i) $\lim _{i \rightarrow \infty} \lambda_{i}=\lambda$ and $\lim _{i \rightarrow+\infty} z_{i}=z$, where λ and z satisfy

$$
\begin{equation*}
1=\lambda^{2}+|z|^{2} \tag{2.32}
\end{equation*}
$$

Set $\xi=\sqrt{\lambda} z$. Then ξ satisfies (1.8).
(ii) \widetilde{u}_{i} satisfies

$$
\begin{equation*}
\left|\widetilde{u}_{i}(x)\right| \leq c|x|^{-\frac{n-2}{2}} \quad \text { for }|x| \leq R_{i}^{-2}, \text { and } \tag{2.33}
\end{equation*}
$$

$$
\begin{align*}
& \left|\widetilde{u}_{i}(x)-a_{i} U_{\lambda_{i}}\left(x-z_{i}\right)\right| \tag{2.34}\\
& \leq c\left(L_{i}^{-n+2}+R_{i}^{-n+2}|x|^{-n+2}+\max _{|y|=M_{i}^{\frac{2}{n-2}}}\left|\widetilde{u}_{i}(y)-a_{i} U_{\lambda_{i}}\left(y-z_{i}\right)\right|\right)
\end{align*}
$$

for $R_{i}^{-2} \leq|x| \leq M_{i}^{\frac{2}{n-2}}$.

Remark 2.8. If $L_{i} M_{i}^{-\frac{2}{n-2}} \leq c$ for some constant $c>0$, then from the proof of Theorem 2.7, we will see that $\widetilde{u}_{i}(y) \leq c_{1} L_{i}^{-n+2}$ for some constant c_{1} when $|y|=M_{i}^{\frac{2}{n-2}}$. Thus, the third term in the right hand side of (2.34) can be absorbed by L_{i}^{-n+2} when $L_{i} M_{i}^{-\frac{2}{n-2}} \leq c$.

To extend the notion of simple blowup to cover the case when u_{i} loses energy of more than one bubble, we modify (2.3) as follows. Let $B_{r}(y)$ denote $\{x:|x-y|<r\}$.

Definition 2.9. Assume 0 is a blowup point. The blowup point 0 is called simple-like if there exist $c>0, r_{0}>0$, a sequence of numbers $\left\{\lambda_{i}\right\}$, a sequence of points $\left\{z_{i}\right\}$ and a sequence of balls $\left\{B_{r_{i}}\left(y_{i}\right)\right\}$ such that $\lim _{i \rightarrow \infty} \lambda_{i}=0, \lim _{i \rightarrow \infty} z_{i}=\lim _{i \rightarrow \infty} y_{i}=0, \lim _{i \rightarrow \infty} r_{i} \lambda_{i}^{-1}=0$, and

$$
u_{i}\left(x+z_{i}\right) \leq c U_{\lambda_{i}}(x) \text { on } B_{r_{0}}(0) \backslash B_{r_{i}}\left(y_{i}\right) .
$$

According to the definition, it is not difficult to see that there are exactly three types of simple-like blowup point: simple blowup, the blowup described in (ii) of Theorem 2.5, and the blowup in Theorem 2.7 when $L_{i} \geq c M_{i}^{\frac{2}{n-2}}$ for some constant $c>0$. On the other hand, if 0 is non-simple-like, then by Theorem 2.5, inequality (2.18) holds and 0 must be isolated.

Remark 2.10. When the assumption (K1) is concerned in the theorems of this section, (K1) is required only when $\beta<n-2$.

3. Applications of the method of moving planes

In this section, we will collect some well-known results and prove some lemmas which will be used in the proofs of the theorems in Section 2. In the proofs, we often assume there is a sequence of local maximum points z_{i} of u_{i} such that the scaled function v_{i} in (2.13) satisfies (2.14). By applying the method of moving planes, we can improve the result of (2.14). When K_{i} satisfies if the nondegenerate conditions (K0) and (K1) with $1<\beta \leq n-2$, we proved that $u_{i}\left(z_{i}+x\right)$ could be bounded by $c U_{\lambda_{i}}(x)$ with $\lambda_{i}=u_{i}\left(z_{i}\right)^{-\frac{2}{n-2}}$ for $|x| \leq L_{i} M_{i}^{-\frac{2}{n-2}}$. See Lemma 3.1 in [9]. Actually the proof there can apply to the degenerate case. In the following, we give a brief sketch of the proof for the convenience of readers. In fact, Lemma 3.1 below deals with the case more general than the one considered in [9], namely, u_{i} is allowed to
have very large values, compared with $u_{i}\left(z_{i}\right)$, in some small region. Let $d(B, 0)$ denote the distance from the origin to a ball B.

Lemma 3.1. Suppose that u_{i} is a solution of (2.11), z_{i} is a local maximum point of u_{i} and v_{i} is given as in (2.13). Let B be a closed ball in \mathbb{R}^{n} with $d(B, 0)>0$ and ε be a positive (small) number. Suppose that there is a sequence of $R_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$ such that

$$
\left|v_{i}(y)-U_{1}(y)\right| \leq \varepsilon U_{1}(y)
$$

for $|y| \leq R_{i}$ and $y \notin B$. Then there exists $\delta=\delta(\varepsilon, d(B, 0))>0$ such that

$$
\begin{equation*}
\min _{|y| \leq r} v_{i}(y) \leq(1+2 \epsilon) U_{1}(r) \tag{3.1}
\end{equation*}
$$

for $0 \leq r \leq L_{i}^{*}(\delta)$, where $L_{i}^{*}(\delta)=\min \left(\delta L_{i}\left(z_{i}\right), M_{i}^{\frac{2}{n-2}}\right)$.
Proof. When B is an empty set and $1 \leq \beta \leq n-2$, this is Lemma 3.1 in [9]. Thus, we only sketch the proof below. For the details, we refer the interested readers to [9].

Let $e_{1}=(1,0, \cdots, 0)$ and $\tau=d(B, 0)$. We may assume the center of B is $r_{0} e_{1}$ for some $r_{0}>\tau$. Let

$$
\begin{align*}
& F(x)=\frac{\tau^{2} x}{|x|^{2}}+\tau e_{1}, \\
& \bar{v}_{i}(x)=\left(\frac{\tau}{|x|}\right)^{n-2} v_{i}\left(\frac{\tau^{2} x}{|x|^{2}}+\tau e_{1}\right), \tag{3.2}\\
& \bar{U}_{1}(x)=\left(\frac{\tau}{|x|}\right)^{n-2} U_{1}\left(\frac{\tau^{2} x}{|x|^{2}}+\tau e_{1}\right) .
\end{align*}
$$

By a straighforward calculation, we have

$$
\bar{U}_{1}(x)=\left(\frac{\lambda}{\lambda^{2}+\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}}
$$

where $\lambda=\frac{\tau^{2}}{\tau^{2}+1}$ and $x_{0}=-\frac{\tau^{3} e_{1}}{\tau^{2}+1}$. Also we have $F^{-1}(B)=\{x$: $\left.x=F^{-1}(y), y \in B\right\} \subset\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right): x_{1}>0\right\}, d(F(B), 0)>0$ and \bar{v}_{i} satisfies

$$
\triangle \bar{v}_{i}+\bar{K}_{i}(x) \bar{v}_{i}^{\frac{n+2}{n-2}}=0
$$

for $x \notin F^{-1}(B)$, where $\bar{K}_{i}(x)=K_{i}\left(z_{i}+M_{i}^{-\frac{2}{n-2}} F(x)\right)$.

Now assume that the conclusion of Lemma 3.1 does not hold. Then by passing to a subsequence, there is a sequence of positive number r_{i} such that $r_{i} \leq L_{i}^{*}(\delta)$ and

$$
\begin{equation*}
\min _{|y| \leq r_{i}} v_{i}(y) \geq(1+2 \epsilon) U_{1}\left(r_{i}\right), \tag{3.3}
\end{equation*}
$$

where $\delta=\delta(\varepsilon)$ will be chosen later. By the assumptions, it is easy to see $r_{i} \geq R_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$. Since by (3.2), $\bar{v}_{i}(x)$ uniformly converges to $\bar{U}_{1}(x)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right), \bar{v}_{i}$ has a local maximum at some point q_{i} near x_{0}. Now we are going to apply the method of moving planes to obtain a contradiction.

For any $\lambda<0$, let $\Sigma_{\lambda}=\left\{x \mid x_{1}>\lambda\right\}, T_{\lambda}=\left\{x \mid x_{1}=\lambda\right\}$ and x^{λ} denote the reflection point of x with respect to T_{λ}. We also let $\Sigma_{\lambda}^{\prime}=\Sigma_{\lambda} \cap\left\{x| | x \mid \geq \tau^{2}\left(r_{i}-\tau\right)^{-1}\right\}$. In the following, we will choose a number λ_{0} satisfying $-\left|x_{0}\right|<\lambda_{0}<-\frac{\left|x_{0}\right|}{2}$ and show that for $\lambda \leq \lambda_{0}$, there exists $i_{0}=i_{0}\left(\lambda_{0}\right)$ such that

$$
\begin{equation*}
\bar{v}_{i}\left(x^{\lambda}\right) \leq \bar{v}_{i}(x) \tag{3.4}
\end{equation*}
$$

for $x \in \Sigma_{\lambda}^{\prime}, \lambda \leq \lambda_{0}$ and $i \geq i_{0}$. This yields a contradiction to the fact that \bar{v}_{i} has a local maximum near x_{0}. Note that the local maximum point q_{i} tends to x_{0} as $i \rightarrow \infty$.

Let $w_{\lambda}(x)=\bar{v}_{i}(x)-\bar{v}_{i}\left(x^{\lambda}\right)$. Then w_{λ} satisfies

$$
\begin{equation*}
\triangle w_{\lambda}+b_{\lambda}(x) w_{\lambda}(x)=Q_{\lambda}(x) \quad \text { in } \Sigma_{\lambda}^{\prime}, \tag{3.5}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
b_{\lambda}(x)=\bar{K}_{i}(x) \frac{\left(\bar{v}_{i}(x)^{\frac{n+2}{n-2}}-\left(\bar{v}_{i}\left(x^{\lambda}\right)^{\frac{n+2}{n-2}}\right)\right.}{\bar{v}_{i}(x)-\bar{v}_{i}\left(x^{\lambda}\right)} \\
Q_{\lambda}(x)=\left(\bar{K}_{i}\left(x^{\lambda}\right)-\bar{K}_{i}(x)\right) \bar{v}_{i}\left(x^{\lambda}\right)^{\frac{n+2}{n-2}}
\end{array}\right.
$$

By (3.2) and (3.3), we have for $|x|=\tau^{2}\left(r_{i}-\tau\right)^{-1}$,

$$
\begin{equation*}
\bar{v}_{i}(x) \geq\left(\frac{r_{i}-\tau}{\tau}\right)^{n-2} \min _{|y| \leq r_{i}} v_{i} \geq(1+\varepsilon) \bar{U}_{1}(0) \tag{3.6}
\end{equation*}
$$

for i large. On the other hand, $\bar{v}_{i}\left(x^{-\left|x_{0}\right|}\right)$ converges to $\bar{U}_{1}\left(0^{-\left|x_{0}\right|}\right)=$ $\bar{U}_{1}(0)$ uniformly for $|x|=\tau^{2} r_{i}^{-1}$, where $x^{-\left|x_{0}\right|}$ and $0^{-\left|x_{0}\right|}$ are the reflection points of x and 0 with respect to the hyperplane $T_{-\left|x_{0}\right|}$. Hence there exists $-\left|x_{0}\right|<\lambda_{0}<\frac{-\left|x_{0}\right|}{2}$ such that

$$
\bar{v}_{i}\left(x^{\lambda}\right) \leq\left(1+\frac{\varepsilon}{2}\right) \bar{U}_{1}(0)
$$

for $|x|=\tau^{2}\left(r_{i}-\tau\right)^{-1}, \lambda \leq \lambda_{0}$ and large i. Together with (3.6), it implies for $|x|=\tau^{2}\left(r_{i}-\tau\right)^{-1}$,

$$
w_{\lambda}(x) \geq \frac{\varepsilon}{2} \bar{U}_{1}(0)
$$

for $\lambda \leq \lambda_{0}$ and large i. In the following, we fix this λ_{0}. Then there is a small c_{0} such that

$$
\begin{equation*}
w_{\lambda}(x) \geq \frac{\varepsilon}{2} \bar{U}(0) \geq c_{0} r_{i}^{-n+2} G^{\lambda}(x, 0) \tag{3.7}
\end{equation*}
$$

holds for $|x|=\tau^{2}\left(r_{i}-\tau\right)^{-1}, \lambda \leq \lambda_{0}$ and large i, where $G^{\lambda}(x, y)$ is

$$
G^{\lambda}(x, y)=c_{n}\left(\frac{1}{|y-x|^{n-2}}-\frac{1}{\left|y^{\lambda}-x\right|^{n-2}}\right)
$$

the Green function of $-\triangle$ on $\Sigma_{\lambda}=\left\{x: x_{1}>\lambda\right\}$.
If $\lambda_{1}<0$ and $\left|\lambda_{1}\right|$ is large, then we have

$$
\begin{equation*}
w_{\lambda}(x) \geq \frac{c_{0}}{2} r_{i}^{-n+2} G^{\lambda}(x, 0) \tag{3.8}
\end{equation*}
$$

for $\lambda \leq \lambda_{1}, x \in \Sigma_{\lambda}^{\prime}$ and large i. For the details, see [9].
For $\lambda>\lambda_{1}$, let $Q_{\lambda}^{+}=\max \left(0, Q_{\lambda}\right), L_{i}=L_{i}\left(z_{i}\right)$ and

$$
\begin{equation*}
h_{\lambda}(x)=a L_{i}^{-n+2} G^{\lambda}(x, 0)-\int_{\Sigma_{\lambda}^{\prime}} G^{\lambda}(x, \eta) Q_{\lambda}^{+}(\eta) d \eta, \tag{3.9}
\end{equation*}
$$

where a is a positive number to be chosen later. Obviously, h_{λ} satisfies

$$
\Delta h_{\lambda}=Q_{\lambda}^{+} \geq Q_{\lambda} \quad \text { in } \Sigma_{\lambda}^{\prime}
$$

For $\lambda \leq \lambda_{0}$ and $\eta \in \Sigma_{\lambda}$, since $\left|\eta^{\lambda}\right| \geq|\eta|$ and $\left|\eta^{\lambda}\right| \geq\left|\lambda_{0}\right| \geq \frac{\left|x_{0}\right|}{2}>0$, one has by (3.2)

$$
\left|\bar{v}_{i}\left(\eta^{\lambda}\right)\right| \leq c_{1}\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2)} .
$$

Here, we use $F^{-1}(B) \subset \Sigma_{\lambda}$ also. For $\eta \in \Sigma_{\lambda}^{\prime}$, we have

$$
|\eta| \geq \tau^{2}\left(r_{i}-\tau\right)^{-1} \geq \frac{\tau^{2}}{2} L_{i}^{*}(\delta) \geq \frac{\tau^{2}}{2} M_{i}^{-\frac{2}{n-2}}
$$

To estimate the integral term in (3.9), we note
$Q_{\lambda}^{+}(\eta) \leq c_{2}\left(1+\left|\eta^{\lambda}\right|\right)^{-(n+2)}\left|K_{i}\left(z_{i}+M_{i}^{-\frac{2}{n-2}} F\left(\eta^{\lambda}\right)\right)-K_{i}\left(z_{i}+M_{i}^{-\frac{2}{n-2}} F(\eta)\right)\right|$.

By (2.10), when $\eta \in \Sigma_{\lambda}^{\prime}$,

$$
\begin{align*}
& \left|K_{i}\left(z_{i}+M_{i}^{-\frac{2}{n-2}} F(\eta)\right)-K_{i}\left(z_{i}\right)\right| \tag{3.10}\\
& \quad \leq c t_{i} M_{i}^{-\frac{2}{n-2}}|F(\eta)|\left\{\left|z_{i}\right|^{\beta-1}+M_{i}^{-\frac{2(\hat{\beta}-1)}{n-2}}|F(\eta)|^{\hat{\beta}-1}\right\} \\
& \quad \leq c_{3} t_{i} M_{i}^{-\frac{2}{n-2}}\left(1+|\eta|^{-1}\right)\left\{\left|z_{i}\right|^{\beta-1}+M_{i}^{-\frac{2(\hat{\beta}-1)}{n-2}}\left(1+|\eta|^{1-\hat{\beta}}\right)\right\} \\
& \quad \leq c_{4} L_{i}^{2-n}\left(1+|\eta|^{-\hat{\beta}}\right),
\end{align*}
$$

where $|\eta| \geq \frac{\tau^{2}}{2} M_{i}^{-\frac{2}{n-2}}$ is used and $\hat{\beta}$ is the number in (2.15). Thus, we have

$$
\begin{equation*}
Q_{\lambda}^{+}(\eta) \leq c_{5} L_{i}^{-n+2}\left(1+|\eta|^{-\hat{\beta}}\right)\left(1+\left|\eta^{\lambda}\right|\right)^{-(n+2)} . \tag{3.11}
\end{equation*}
$$

By (3.11), following the computation in the proof of Lemma 3.1 in [9], we obtain

$$
\begin{equation*}
\int_{\Sigma_{\lambda}^{\prime}} G^{\lambda}(x, \eta) Q_{\lambda}^{+}(\eta) d \eta \leq c_{6} L_{i}^{-n+2} G^{\lambda}(x, 0) \tag{3.12}
\end{equation*}
$$

for $x \in \Sigma_{\lambda}^{\prime}$, where c_{6} is a constant depending on the constants in (2.10), τ and n only.

Set $a=2 c_{6}$ in (3.9). Then

$$
\begin{equation*}
0<\frac{a}{2}\left[L\left(z_{i}\right)\right]^{-n+2} G^{\lambda}(x, 0) \leq h_{\lambda}(x) \leq a\left[L\left(z_{i}\right)\right]^{-n+2} G^{\lambda}(x, 0) \tag{3.13}
\end{equation*}
$$

Recall that $r_{i} \leq \delta L_{i}\left(z_{i}\right)$. Choose δ to be sufficiently small such that $c_{0} \delta^{-n+2} \geq 2 a$. Then by (3.7) and (3.8), for i large,

$$
w_{\lambda}(x)>h_{\lambda}(x)
$$

holds for $x \in \Sigma_{\lambda}^{\prime}$ if $\lambda=\lambda_{1}$, and holds for $|x|=\tau^{2}\left(r_{i}-\tau\right)^{-1}$ and $\lambda \leq \lambda_{0}$. It follows that h_{λ} satisfies the assumptions of Lemma 2.1 in [9] with $\lambda_{1} \leq \lambda \leq \lambda_{0}$ when i is large. Applying Lemma 2.1 in [9], $w_{\lambda}(x)>h_{\lambda}(x)>0$ for $x \in \Sigma_{\lambda}^{\prime}$ and $\lambda \leq \lambda_{0}$. Hence, (3.4) is proved, and then the proof of Lemma 3.1 is finished. q.e.d.

Note that if u_{i} is a global solution defined in the whole space \mathbb{R}^{n}, then we can choose

$$
L_{i}^{*}(\delta)=\min \left(L_{i}^{*}(\delta), \lambda M_{i}^{\frac{2}{n-2}}\right)
$$

for any $\lambda>0$. Inequality (3.1) is very useful when the Harnack inequality holds for v_{i} on each sphere $|y|=r$. Actually, under some extra condition on u_{i}, we can derive the spherical Harnack inequality from (3.1) itself by using the Green representation formula. We will explain this in Lemma 3.4, which tells us how to derive the Harnack inequality. Before that, we have to state two well-known lemmas. For their proofs, see [9].

Lemma 3.2. Suppose $\phi(x)$ satisfies

$$
\triangle \phi(x)+n(n+2) U_{1}^{\frac{4}{n-2}} \phi(x)=0 \quad \text { in } \mathbb{R}^{n}
$$

with $\phi(x) \rightarrow 0$ as $|y| \rightarrow \infty$. Then $\phi(x)$ can be written as

$$
\phi(x)=c_{0} \psi_{0}(x)+\sum_{j=1}^{n} c_{j} \psi_{j}(x)
$$

for some $c_{j} \in \mathbb{R}, j=0,1, \ldots, n$, where $\psi_{j}(x)=\frac{\partial U_{1}}{\partial x_{j}}$ for $1 \leq j \leq n$ and $\psi_{0}(x)=\frac{n-2}{2} U_{1}+x \cdot \nabla U_{1}$.

Lemma 3.3. Suppose that u is a positive smooth solution of

$$
\triangle u+K(x) u^{\frac{n+2}{n-2}}=0 \text { in } B_{r},
$$

where $|K(x)| \leq b$. Then there exists a small $\epsilon_{o}>0$, depending on b and n only, such that if $\|u\|_{L^{\frac{2 n}{n-2}}} \leq \epsilon_{o}$, then the Harnack inequality

$$
u(x) \leq c u(y)
$$

holds for $|x|,|y| \leq r / 4$, where $c>0$ depends on b and n only.
In Lemma 3.4, we consider a more general setting, which is needed later. Assume that $0<a \leq K(x) \leq b, u$ is a solution of

$$
\begin{equation*}
\triangle u+K(x) u^{\frac{n+2}{n-2}}=0, u>0 \text { for }|x| \leq l_{0} \tag{3.14}
\end{equation*}
$$

and U is the solution of

$$
\left\{\begin{array}{l}
\triangle U+K_{0} U^{\frac{n+2}{n-2}}=0, U>0 \text { in } \mathbb{R}^{n} \tag{3.15}\\
U(0)=\max _{\mathbb{R}^{n}} U=1
\end{array}\right.
$$

where K_{0} is a positive constant. Let $B_{r}=\{x:|x|<r\}$.
Lemma 3.4. Let u, U and l_{0} be as above. Suppose $0<\sigma<1$, $R \leq \frac{l_{0}}{8}$, and $E \subseteq B_{R / 2}$ such that

$$
\begin{equation*}
|u(x)-U(x)| \leq \sigma U(x) \tag{3.16}
\end{equation*}
$$

for $x \in B_{R} \backslash E$,

$$
\begin{equation*}
\int_{|x| \leq R}\left|K(x)-K_{0}\right| U^{\frac{n+2}{n-2}} d x \leq \sigma \tag{3.17}
\end{equation*}
$$

$$
\begin{equation*}
\int_{E} U^{\frac{n+2}{n-2}} d x<\sigma, \quad \text { and } \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
\min _{|x|=l} u(x) \leq(1+\sigma) U(r) \tag{3.19}
\end{equation*}
$$

for some $l \in\left[R, \frac{l_{0}}{4}\right]$. Then there is a constant c_{1} depending on n and b only such that

$$
\begin{equation*}
\int_{R \leq|x| \leq l} u^{\frac{n+2}{n-2}} d x \leq c_{1}\left(R^{-2}+\sigma+\left(\frac{l}{l_{0}}\right)^{n-2}\right) \tag{3.20}
\end{equation*}
$$

Furthermore, if

$$
\begin{gather*}
u(x) \leq c_{2}\left(R^{-2}+\sigma+\left(\frac{l}{l_{0}}\right)^{n-2}\right)^{-1}, \quad \text { and } \tag{3.21}\\
\min _{|x|=r} u(x) \leq c_{3} U(r) \tag{3.22}
\end{gather*}
$$

for $R \leq r \leq l$ where $c_{2}=c_{2}(n, a, b)$ is a small positive constant and $c_{3}>0$, then

$$
\begin{equation*}
u(x) \leq c_{4} U(x) \tag{3.23}
\end{equation*}
$$

for $|x| \leq \frac{l}{2}$ and $x \notin E$, where c_{4} depends on c_{2} and c_{3}.

Proof. For $r>0$, let $B_{r}=\{x:|x|<r\}$. Let $G(x, \eta)$ be the Green function of the Laplacian operator $-\triangle$ on the ball $B_{l_{0}}$ with zero boundary value. Let x_{0} be a point satisfy $\left|x_{0}\right|=l$ and $u\left(x_{0}\right)=\min _{|x| \leq l} u(x)$. By the Green identity and (3.19),

$$
\begin{equation*}
(1+\sigma) U\left(x_{0}\right) \geq u\left(x_{0}\right) \geq \int_{B_{l_{0}}} G\left(x_{0}, \eta\right) K(\eta) u^{\frac{n+2}{n-2}}(\eta) d \eta \tag{3.24}
\end{equation*}
$$

and

$$
\begin{align*}
U\left(x_{0}\right) & =\int_{B_{l_{0}}} G\left(x_{0}, \eta\right) K_{0} U^{\frac{n+2}{n-2}} d \eta+U\left(l_{0}\right) \\
& \leq \int_{B_{l_{0}}} G\left(x_{0}, \eta\right) K_{0} U^{\frac{n+2}{n-2}} d \eta+U\left(l_{0}\right) \tag{3.25}
\end{align*}
$$

Hence there is c_{n} depending on n only such that

$$
\begin{align*}
& a c_{n} \int_{\frac{R}{2} \leq \eta \leq \frac{l_{0}^{2}}{2}}(l+|\eta|)^{-n+2} u^{\frac{n+2}{n-2}} d \eta \\
& \quad \leq u\left(x_{0}\right)-\int_{B_{\frac{R}{2}} \backslash E} G\left(x_{0}, \eta\right) K(\eta) u^{\frac{n+2}{n-2}} d \eta \tag{3.26}\\
& \quad \leq(1+\sigma) U\left(x_{0}\right)-\int_{B_{\frac{R}{2} \backslash E} \backslash} G\left(x_{0}, \eta\right) K(\eta) u^{\frac{n+2}{n-2}} d \eta .
\end{align*}
$$

By the assumptions (3.16) and (3.17), there is c_{4} depending on n and b only such that

$$
\begin{array}{rl}
\int_{B_{\frac{R}{2}} \backslash E} & G\left(x_{0}, \eta\right) K(\eta) u^{\frac{n+2}{n-2}} d \eta \\
\geq & \int_{B_{\frac{R}{2}} \backslash E} G\left(x_{0}, \eta\right)\left\{K_{0} U^{\frac{n+2}{n-2}}+K(\eta)\left(u^{\frac{n+2}{n-2}}-U^{\frac{n+2}{n-2}}\right)\right. \\
\left.\quad-\left|K(\eta)-K_{0}\right| U^{\frac{n+2}{n-2}}\right\} d \eta \\
\geq & \int_{B_{\frac{R}{2}}} G\left(x_{0}, \eta\right) K_{0} U^{\frac{n+2}{n-2}} d \eta-c_{4} l^{-n+2} \sigma .
\end{array}
$$

Together with (3.25), it leads to

$$
\begin{aligned}
a c_{n} & \int_{\frac{R}{2} \leq \eta \leq \frac{l_{0}}{2}}\left(1+l^{-1}|x|\right)^{-n+2} u^{\frac{n+2}{n-2}} d \eta \\
& \leq l^{n-2}\left[\int_{B_{l_{0}} \backslash B_{\frac{R}{2}}} G\left(x_{0}, \eta\right) K_{0} U^{\frac{n+2}{n-2}} d \eta+c_{4} l^{-n+2} \sigma\right] \\
& +l^{n-2}\left[\sigma U\left(x_{0}\right)+U\left(l_{0}\right)\right] \\
& \leq c_{5}\left(\sigma+R^{-2}+\left(\frac{l}{l_{0}}\right)^{n-2}\right),
\end{aligned}
$$

where c_{5} depends on n and b only. Obviously the inequality (3.20) follows immediately.

Let ϵ_{0} be the number in Lemma 3.3 and c_{2} be a small number such that

$$
c_{2} c_{5}\left(c_{n} a\right)^{-1}<\epsilon_{0} .
$$

If $u(x) \leq c_{2}\left(R^{-2}+\sigma+\left(\frac{l}{l_{0}}\right)^{n-2}\right)^{-1}$ for $\frac{R}{2} \leq|x| \leq l$, then

$$
\int_{\frac{R}{2} \leq|\eta| \leq l} u^{\frac{2 n}{n-2}} d \eta<\int_{\frac{R}{2} \leq|\eta| \leq l} u^{\frac{n+2}{n-2}} d \eta\left(\max _{\frac{R}{2} \leq|\eta| \leq l} u\right)<\epsilon_{0} .
$$

By Lemma 3.3, the Harnack inequality holds for u on $\{x:|x|=r\}$ with $R \leq r \leq \frac{l}{2}$. The inequality (3.23) then follows from it and (3.22) for $R \leq r \leq \frac{l}{2}$. Together with (3.16), (3.23) holds for all $|x| \leq \frac{l}{2}$ and $x \notin E$. q.e.d.

Let z_{i} be a local maximum point and v_{i} be the scaled solution in (2.13) such that (2.14) holds and $U_{i}(y)$ be the solution of (3.15) with $K_{0}=K_{i}\left(z_{i}\right)$. In the next step, we are going to estimate the difference between v_{i} and $U_{i}(y)$. By (2.14), for any $\varepsilon>0$, we have a sequence of $R_{i} \rightarrow+\infty$ such that

$$
\left|v_{i}(y)-U_{i}(y)\right| \leq \varepsilon U_{i}(y) \text { for }|y| \leq R_{i} .
$$

By Lemma 3.1, there exists $\delta_{0}=\delta_{0}(\varepsilon)>0$ such that

$$
\begin{equation*}
\min _{|y|=r} v_{i}(y) \leq(1+2 \varepsilon) U_{i}(r) \tag{3.27}
\end{equation*}
$$

for $0 \leq r \leq L_{i}^{*}\left(\delta_{0}\right)$. Then Lemma 3.4 yields the following important result.

Lemma 3.5. Let v_{i} and U_{i} be described as above. Suppose that there is a sequence of positive number $l_{i} \leq L_{i}^{*}\left(\delta_{0}\right)$ such that

$$
\begin{equation*}
v_{i}(y) \leq \bar{c}_{1} \quad \text { for } \quad|y| \leq l_{i} \tag{3.28}
\end{equation*}
$$

Then there exists a small $d>0$ such that

$$
\begin{gather*}
v_{i}(y) \leq \bar{c}_{2} U_{i}(y), \quad \text { and } \tag{3.29}\\
\left|v_{i}(y)-U_{i}(y)\right| \leq \bar{c}_{2} r_{i}^{-n+2} \tag{3.30}
\end{gather*}
$$

for $|y| \leq r_{i}=d l_{i}$ where d is a constant depending on n only. Furthermore, let $\widetilde{Q}_{i}(y)=K_{i}\left(z_{i}\right)-K_{i}\left(z_{i}+M_{i}^{-\frac{2}{n-2}} y\right)$. Then for $r \leq r_{i}$,

$$
\begin{equation*}
\left|\int_{|y| \leq r} \widetilde{Q}(y) U_{i}^{\frac{n+2}{n-2}}(y) \psi_{0}(y) d y\right| \leq c_{1} r^{-n+2} \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{|y| \leq r} \widetilde{Q}(y) U_{i}^{\frac{n+2}{n-2}}(y) \psi_{j}(y) d y\right| \leq c_{1} r^{-n+1} \tag{3.32}
\end{equation*}
$$

for $1 \leq j \leq n$, where $\psi_{j}(x)$ are given in Lemma 3.2.
Proof. Without loss of generality, we might assume $R_{i} \ll l_{i}$. Otherwise, (3.29)-(3.30) hold automatically. By Lemma 3.1, (3.27) holds for $0 \leq r \leq l_{i}$. Since $K_{i}=n(n-2)+t_{i} \hat{K}$, we have

$$
\int_{|x| \leq R_{i}}\left|\widetilde{K}_{i}(x)-K_{i}\left(z_{i}\right)\right| U^{\frac{n+2}{n-2}}(x) d x \leq \bar{c} t_{i} \leq \varepsilon
$$

for t_{i} small, where $\widetilde{K}_{i}(x)=K_{i}\left(z_{i}+M_{i}^{-\frac{2}{n-2}} x\right)$. Thus, v_{i} satisfies assumptions $(3.16) \sim(3.19)$ with an empty set $E, R=R_{i}, l=d l_{i}$ and $l_{0}=M_{i}^{\frac{2}{n-2}}$. Let d be small such that

$$
\bar{c}_{1}\left(R_{i}^{-2}+\varepsilon+d^{n-2}\right)<c_{2}
$$

where c_{2} is the constant in (3.21). Then by (3.28), we have

$$
v_{i}(y) \leq c_{2}\left(R_{i}^{-2}+\varepsilon+d^{n-2}\right)^{-1} \text { for }|y| \leq l_{i}
$$

Then (3.29) follows immediately from Lemma 3.4. The inequality (3.30) can be proved by the same argument as in Lemma 3.3 of [9]. Hence, we omit the proof here.

To Prove (3.31) and (3.32), we let $w_{i}=v_{i}(y)-U_{i}(y)$. Then w_{i} satisfies

$$
\begin{equation*}
\Delta w_{i}+\widetilde{b}_{i}(y) w_{i}(y)=\widetilde{Q}_{i}(y) U_{i}^{\frac{n+2}{n-2}}(y) \tag{3.33}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\widetilde{b}_{i}(y)=\widetilde{K}_{i}(y)\left(\frac{v_{i}^{\frac{n+2}{n-2}}-U_{i}^{\frac{n+2}{n-2}}}{v_{i}-U_{i}}\right), \tag{3.34}\\
\widetilde{K}_{i}(y)=K_{i}\left(z_{i}+M_{i}^{-\frac{2}{n-2}} y\right), \text { and } \\
\widetilde{Q}_{i}(y)=K_{i}\left(z_{i}\right)-\widetilde{K}_{i}(y) .
\end{array}\right.
$$

Multiplying (3.33) by ψ_{j}, one has

$$
\begin{align*}
\int_{|y| \leq r} w_{i}\left(\Delta \psi_{j}+\widetilde{b}_{i} \psi_{j}\right) d y+\int_{|y|=r}(& \left.\psi_{j} \frac{\partial w_{i}}{\partial \nu}-w_{i} \frac{\partial \psi_{j}}{\partial \nu}\right) d \sigma \tag{3.35}\\
& =\int_{|y| \leq r} \widetilde{Q}_{i} U_{i}^{\frac{n+2}{n-2}} \psi_{j} d y
\end{align*}
$$

for $0 \leq j \leq n$. Let $r_{i}=d l_{i}$. By (3.30), we have for $|y| \leq r_{i}$,

$$
\begin{equation*}
\left|v_{i}(y)-U_{i}(y)\right| \leq \bar{c}_{2} r_{i}^{2-n} . \tag{3.36}
\end{equation*}
$$

To estimate the first term of (3.35), we recall

$$
\Delta \psi_{j}+\frac{n+2}{n-2} K_{i}\left(z_{i}\right) U_{i}^{\frac{4}{n-2}} \psi_{j}=0
$$

and then

$$
\begin{aligned}
w_{i}\left(\Delta \psi_{j}+\widetilde{b}_{i} \psi_{j}\right)= & \left(\widetilde{K}_{i}(y)-K_{i}\left(z_{i}\right)\right)\left(v_{i}^{\frac{n+2}{n-2}}-U_{i}^{\frac{n+2}{n-2}}\right) \psi_{j} \\
& +K_{i}\left(z_{i}\right)\left(v_{i}^{\frac{n+2}{n-2}}-U_{i}^{\frac{n+2}{n-2}}-\frac{n+2}{n-2} U_{i}^{\frac{4}{n-2}} w_{i}\right) \psi_{j}
\end{aligned}
$$

Hence for $j=0$, we have as in (3.10)

$$
\begin{align*}
& \left|w_{i}\left(\Delta \psi_{0}+\widetilde{b}_{i} \psi_{0}\right)\right| \\
& \quad \leq c\left\{r_{i}^{2-n} L_{i}\left(z_{i}\right)^{-n+2}(1+|y|)^{\hat{\beta}-n-2}+r_{i}^{2(2-n)}(1+|y|)^{-4}\right\} \tag{3.37}\\
& \quad \leq 2 c r_{i}^{2(2-n)}(1+|y|)^{-2}
\end{align*}
$$

where $\left|\psi_{0}(y)\right| \leq c(1+|y|)^{2-n}$ and $\hat{\beta}<n$ are used. Similarly, by

$$
\left|\psi_{j}(y)\right| \leq c(1+|y|)^{1-n} \text { for } 1 \leq j \leq n
$$

we have

$$
\begin{equation*}
\left|w_{i}\left(\Delta \psi_{j}+\widetilde{b}_{i} \psi_{j}\right)\right| \leq c r_{i}^{2(2-n)}(1+|y|)^{-3} . \tag{3.38}
\end{equation*}
$$

By applying (3.37) and (3.38), we have

$$
\left|\int_{B_{r}} w_{i}\left(\Delta \psi_{j}+\widetilde{b}_{i} \psi_{j}\right) d y\right|=O\left(r^{2-n}\right)
$$

for $j=0$, and

$$
\left|\int_{B_{r}} w_{i}\left(\Delta \psi_{j}+\widetilde{b}_{i} \psi_{j}\right) d y\right|=O\left(r^{1-n}\right)
$$

for $1 \leq j \leq n$. When $|y|=r$, we have

$$
\left|\nabla v_{i}(y)\right| \leq c|y|^{-1} v_{i}(y)=O\left(|y|^{1-n}\right)
$$

by the gradient estimate. Therefore, the boundary term of (3.35) is bounded by $O\left(r^{2-n}\right)$ for $j=0$ and is bounded by $O\left(r^{1-n}\right)$ for $1 \leq j \leq n$. Both (3.31) and (3.32) then follow from (3.35). q.e.d.

Proof of Theorem 2.2. We prove Theorem 2.2 by contradiction. Suppose $\lim _{i \rightarrow+\infty} \hat{M}_{i}\left|x_{i}\right|^{\frac{n-2}{2}}=+\infty$. If $\beta \geq n-2$, by the definition (2.15) and the assumption that $L_{i}\left(x_{i}\right) \hat{M}_{i}^{-\frac{2}{n-2}}$ is bounded, we have

$$
\begin{equation*}
L_{i}\left(x_{i}\right)=\left(t_{i}^{-1} \hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|^{1-\beta}\right)^{\frac{1}{n-2}} \tag{3.39}
\end{equation*}
$$

If $1 \leq \beta<n-2$, then

$$
\begin{aligned}
t_{i}^{-1} \hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|^{1-\beta} & =t_{i}^{-1} \hat{M}_{i}^{\frac{2 \beta}{n-2}}\left(\hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|\right)^{1-\beta} \\
& \leq t_{i}^{-1} \hat{M}_{i}^{\frac{2 \beta}{n-2}}
\end{aligned}
$$

which implies (3.39) also.
Let $v_{i}(y)$ be defined as (2.13) with $z_{i}=x_{i}$. Obviously, $v_{i}(y) \leq 1$ for $|y| \leq \hat{M}_{i}^{\frac{2}{n-2}}$. By Lemma 3.5, there exists a $\delta_{2}>0$ such that (3.29)(3.32) hold with $d l_{i}$ replaced by $\delta_{2} L_{i}\left(x_{i}\right)$. Recall the quantity \widetilde{Q}_{i} in

Lemma 3.5. We may assume $\lim _{i \rightarrow+\infty} \frac{\nabla \hat{K}\left(x_{i}\right)}{\left|\nabla \hat{K}\left(x_{i}\right)\right|}=e_{1}=(1,0, \ldots, 0)$. Then

$$
\begin{align*}
-\widetilde{Q}_{i} & =K_{i}\left(x_{i}+\hat{M}_{i}^{\frac{-2}{n-2}} y\right)-K_{i}\left(x_{i}\right) \\
& =t_{i} \hat{M}_{i}^{\frac{-2}{n-2}}\left(\nabla \hat{K}\left(x_{i}\right), y\right)+c(\delta, i) t_{i} M_{i}^{-\frac{2}{n-2}}\left|\nabla \hat{K}\left(x_{i}\right)\right||y| \tag{3.40}\\
& =t_{i} \hat{M}_{i}^{\frac{-2}{n-2}}\left|\nabla \hat{K}\left(x_{i}\right)\right| y_{1}+c(\delta, i) t_{i} M_{i}^{-\frac{2}{n-2}}\left|\nabla \hat{K}\left(x_{i}\right)\right||y|
\end{align*}
$$

for $|y| \leq \delta \hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|$, where $c(\delta, i)$ could be arbitrarily small if i is large and δ is small. Therefore, we can choose δ small enough so that

$$
\begin{align*}
\int_{|y| \leq r_{i}}\left(-\widetilde{Q}_{i}\right) U_{i}^{\frac{n+2}{n-2}}(y) \psi_{1}(y) d y & \geq c t_{i} \hat{M}_{i}^{-\frac{2}{n-2}}\left|x_{i}\right|^{\beta-1} \tag{3.41}\\
& =c\left(L_{i}\left(x_{i}\right)\right)^{2-n}
\end{align*}
$$

for some $c>0$ where $r_{i}=\delta \hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|$. For the simplicity of notations, we let $l_{i}=\delta_{2} L_{i}\left(x_{i}\right)$. If $r_{i} \geq l_{i}$, then by (3.41), we have

$$
\begin{equation*}
\int_{|y| \leq l_{i}}\left(-\widetilde{Q}_{i}\right) U_{i}^{\frac{n+2}{n-2}}(y)\left|\psi_{1}(y)\right| d y \geq c_{1}\left(L_{i}\left(x_{i}\right)\right)^{2-n} . \tag{3.42}
\end{equation*}
$$

If $l_{i} \geq r_{i}$, as in (3.10), we have

$$
\begin{aligned}
& \int_{r_{i} \leq|y| \leq l_{i}}\left|\widetilde{Q}_{i}\right| U_{i}^{\frac{n+2}{n-2}}(y) \psi_{1}(y) d y \\
& \quad \leq c \int_{r_{i} \leq|y| \leq l_{i}}\left(L_{i}\left(x_{i}\right)^{-n+2}|y|^{-2 n}+t_{i} \hat{M}_{i}^{-\frac{2 \hat{\beta}}{n-2}}|y|^{-n-1}\right) d y \\
& \quad=o(1) L_{i}\left(x_{i}\right)^{2-n} .
\end{aligned}
$$

Together with (3.41), it implies that (3.42) holds also in the case of $l_{i} \geq r_{i}$.

On the other hand, by (3.32), we have

$$
\left|\int_{|y| \leq l_{i}} \widetilde{Q}_{i} U_{i}^{\frac{n+2}{n-2}} \psi_{1} d y\right| \leq c_{1} L_{i}\left(x_{i}\right)^{-n+1}
$$

This contradicts (3.42). Hence we conclude $\hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|$ is bounded.

Suppose $\beta \geq n-2$. Since $\hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|$ is bounded, we have

$$
\begin{aligned}
\hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|^{1-\beta} & =\left(\hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|\right)^{1-\beta} \hat{M}_{i}^{\frac{2 \beta}{n-2}} \\
& \geq c_{1} \hat{M}_{i}^{2}
\end{aligned}
$$

Hence,

$$
\lim _{i \rightarrow+\infty} L_{i}^{n-2}\left(x_{i}\right) \hat{M}_{i}^{-2} \geq c_{1} \lim _{i \rightarrow+\infty} t_{i}^{-1}=+\infty
$$

which yields a contradiction to our assumptions. Thus, $\beta<n-2$ must hold.

To prove (2.16), we let $w_{i}(y)=l_{i}^{n-2}\left(v_{i}(y)-U_{i}(y)\right)$ where $l_{i}=$ $\delta_{2} L_{i}\left(x_{i}\right)$. Then w_{i} satisfies (3.33) with $\widetilde{Q}_{i}(y)$ replaced $l_{i}^{n-2} \widetilde{Q}_{i}$ in the right hand side. By (K0),

$$
\begin{align*}
\widetilde{Q}_{i}(y)= & K_{i}\left(x_{i}\right)-K_{i}\left(x_{i}+\hat{M}_{i}^{\frac{2}{n-2}} y\right) \\
= & -t_{i}\left[Q\left(x_{i}+\hat{M}_{i}^{-\frac{2}{n-2}} y\right)+R\left(x_{i}+\hat{M}_{i}^{-\frac{2}{n-2}} y\right)\right] \\
& +\left(K_{i}\left(x_{i}\right)-K_{i}(0)\right) \tag{3.43}\\
= & -t_{i} \hat{M}_{i}^{-\frac{2 \beta}{n-2}}\left[Q\left(\xi_{i}+y\right)+o(1)\left(|y|^{\beta}+1\right)\right] \\
& +\left(K_{i}\left(x_{i}\right)-K_{i}(0)\right),
\end{align*}
$$

where $\xi_{i}=\hat{M}_{i}^{\frac{2}{n-2}} x_{i}$. By (3.30) of Lemma 3.5, $w_{i}(y)$ is uniformly bounded in \mathbb{R}^{n}. After passing to a subsequence, we may assume that $w_{i}(y)$ converges to $w(y)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$. Since $\beta<n-2$ and $\hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|$ is bounded, we have $L_{i}^{-n+2} \sim t_{i} \hat{M}_{i}^{-\frac{2 \beta}{n-2}}$. We may assume

$$
c=\lim _{i \rightarrow \infty} t_{i} l_{i}^{n-2} \hat{M}_{i}^{\frac{-2 \beta}{n-2}}>0
$$

exists. Multiplying both sides of (3.33) by $\psi_{j}=\frac{\partial U_{i}}{\partial y_{j}}$, we have by integration by parts,

$$
\begin{aligned}
\int_{B_{l_{i}}} l_{i}^{n-2} \widetilde{Q}_{i}(y) U_{i}^{\frac{n+2}{n-2}} \psi_{j}(y) d y= & \int_{B_{l_{i}}} w_{i}\left(\Delta \psi_{j}+\widetilde{b}_{i}(y) \psi_{j}\right) d y \\
& +\int_{\partial B_{l_{i}}}\left(\psi_{j} \frac{\partial w_{i}}{\partial \nu}-w_{i} \frac{\partial \psi_{j}}{\partial \nu}\right) d \sigma .
\end{aligned}
$$

By (3.30), the boundary term $=O\left(l_{i}^{-1}\right) \rightarrow 0$ as $i \rightarrow+\infty$, and

$$
\begin{aligned}
\left|\Delta \psi_{j}+\widetilde{b}_{i}(y) \psi_{j}\right| & \leq\left|\widetilde{b}_{i}(y) \psi_{j}(y)\right|+(n+2) n\left|U_{1}^{\frac{4}{n-2}}(y) \psi_{j}(y)\right| \\
& \leq c(1+|y|)^{-(n+2)}
\end{aligned}
$$

Thus, by Lebseque's convergence theorem, the right hand side converges to

$$
\int_{\mathbb{R}^{n}} w\left(\Delta \psi_{j}+n(n+2) U_{1}^{\frac{4}{n-2}} \psi_{j}\right) d y=0
$$

Together with (3.43), it implies

$$
\begin{aligned}
0 & =\lim _{i \rightarrow+\infty} \int_{B_{l_{i}}} l_{i}^{n-2} \widetilde{Q}_{i}(y) U_{i}^{\frac{n+2}{n-2}} \psi_{j}(y) d y \\
& =c \lim _{i \rightarrow+\infty} \int_{B_{l_{i}}} Q\left(\xi_{i}+y\right) U_{1}^{\frac{n+2}{n-2}}(y) \frac{\partial U_{1}(y)}{\partial y_{j}} d y \\
& =\frac{(n-2) c}{2 n} \int_{\mathbb{R}^{n}} Q(\xi+y) \frac{\partial}{\partial y_{j}} U_{1}^{\frac{2 n}{n-2}}(y) d y \\
& =\frac{-(n-2) c}{2 n} \int_{\mathbb{R}^{n}} \frac{\partial}{\partial y_{j}} Q(\xi+y) U_{1}^{\frac{2 n}{n-2}}(y) d y
\end{aligned}
$$

where U_{1} is defined in (1.4). Here, we have used the fact that $\psi_{j}(y)$ is odd in y_{j}, and

$$
\int_{B_{l_{i}}}\left(K_{i}\left(x_{i}\right)-K_{i}(0)\right) \psi_{j}(y) U_{i}^{\frac{n+2}{n-2}}(y) d y=0
$$

The proof of Theorem 2.2 is complete. q.e.d.
Proof of Theorem 2.1. Note that in Section 8, (2.16) is also proved when $\beta<n+1$. This holds only for global solutions. See Lemma 8.1. Let x_{i} and \hat{M}_{i} be the maximum point and the maximum of u_{i} defined in (2.12). We first prove the "if" part. Assume there is a constant $c>0$ such that

$$
\begin{equation*}
L_{i}\left(x_{i}\right) \geq c \hat{M}_{i}^{\frac{2}{n-2}} \tag{3.44}
\end{equation*}
$$

Let $v_{i}(y)$ be the scaled solution defined in (2.13) with $z_{i}=x_{i}$. Obviously, $v_{i}(y) \leq 1$ for $|y| \leq \hat{M}_{i}^{\frac{2}{n-2}}$. By Lemma 3.1, Lemma 3.5 and (3.44), there exists a small positive number $\delta>0$ such that $v_{i}(y) \leq c U_{1}(y)$ for $|y| \leq \delta \hat{M}_{i}^{\frac{2}{n-2}}$ and for some $c>0$. Therefore, 0 is a simple blow-up point.

To prove the "only if" part, we assume

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} L_{i}\left(x_{i}\right) \hat{M}_{i}^{-\frac{2}{n-2}}=0 \tag{3.45}
\end{equation*}
$$

Suppose that 0 is a simple blowup point. Then there exists positive constants c and $\delta_{0}<1$ such that

$$
\begin{equation*}
v_{i}(y) \leq c U_{1}(y) \tag{3.46}
\end{equation*}
$$

for $|y| \leq \delta_{0} \hat{M}_{i}^{\frac{2}{n-2}}$. Following the notations of Lemma 3.5, we let $w_{i}(y)=$ $v_{i}(y)-U_{i}(y)$ and $\psi_{0}(y)=\frac{n-2}{2} U_{i}(y)+y \cdot \nabla U_{i}(y)$. By the gradient estimate, we have by (3.46), $\left|\nabla v_{i}(y)\right|=O\left(|y|^{-n+1}\right)$ for $|y| \geq 1$. Thus,

$$
\begin{equation*}
\int_{|x|=\hat{r}_{i}}\left(\psi_{0} \frac{\partial w_{i}}{\partial \nu}-w_{i} \frac{\partial \psi_{0}}{\partial \nu}\right) d \sigma=O\left(\hat{r}_{i}^{-n+2}\right)=O\left(\hat{M}_{i}^{-2}\right) \tag{3.47}
\end{equation*}
$$

where $\hat{r}_{i}=\delta_{0} \hat{M}_{i}^{\frac{2}{n-2}}$. To estimate the first term of (3.35), we have by Lemma 3.5

$$
\begin{aligned}
\int_{B_{\hat{r}_{i}}} w_{i}\left(\Delta \psi_{0}+\widetilde{b}_{i} \psi_{0}\right) d y= & \int_{B_{r_{i}}} w_{i}\left(\Delta \psi_{0}+\widetilde{b}_{i} \psi_{0}\right) d y \\
& +\int_{B_{\hat{r}_{i}} \backslash B_{r_{i}}} w_{i}\left(\Delta \psi_{0}+\widetilde{b}_{i} \psi_{0}\right) d y
\end{aligned}
$$

where $r_{i}=\delta_{0} L_{i}\left(x_{i}\right)$. By Theorem 2.2, we have $1 \leq \beta<n-2$. Similar to (3.37), we have by the fact $\beta<n-2$ that

$$
\left|w_{i}\left(\Delta \psi_{0}+\widetilde{b}_{i} \psi_{0}\right)\right| \leq c r_{i}^{2(n-2)}(1+|y|)^{-4}
$$

for $1 \leq r \leq r_{i}$. Hence

$$
\left|\int_{B_{r_{i}}} w_{i}\left(\Delta \psi_{0}+\widetilde{b}_{i} \psi_{0}\right) d y\right|=O\left(r_{i}^{-n+1}\right)
$$

We note that Lemma 3.5 is crucial in the estimate above. By applying $\left|v_{i}(y)\right|+\left|U_{i}(y)\right| \leq c|y|^{-n+2}$ and $\left|\psi_{0}(y)\right| \leq c|y|^{-n+2}$ for $r_{i} \leq|y| \leq \hat{r}_{i}$,

$$
\left|\int_{B_{\tilde{r}_{i}} \backslash B_{r_{i}}} w_{i}\left(\Delta \psi_{0}+\widetilde{b}_{i} \psi_{0}\right) d y\right|=O\left(r_{i}^{-n+1}\right) .
$$

Together with these two estimates, we have

$$
\begin{equation*}
\left|\int_{B_{\hat{r}_{i}}} w_{i}\left(\Delta \psi_{0}+\widetilde{b}_{i} \psi_{0}\right) d y\right|=O\left(r_{i}^{-n+1}\right) . \tag{3.48}
\end{equation*}
$$

By Theorem 2.2, $\xi_{i}=\hat{M}_{i}^{\frac{2}{n-2}} x_{i}$ is bounded. We may assume $\xi=$ $\lim _{i \rightarrow+\infty} \xi_{i}$. Then ξ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y=0 \tag{3.49}
\end{equation*}
$$

Also, the right hand side of (3.35) converges to

$$
\begin{align*}
& \lim _{i \rightarrow+\infty} t_{i}^{-1} \hat{M}_{i}^{\frac{2 \beta}{n-2}}\left(\int_{B_{\hat{r}_{i}}} \widetilde{Q}_{i} U_{i}^{\frac{n+2}{n-2}} \psi_{0}(y) d y\right) \tag{3.50}\\
&=-\int_{\mathbb{R}^{n}} Q(y+\xi) U_{1}^{\frac{n+2}{n-2}}(y) \psi_{0}(y) d y
\end{align*}
$$

Recall that $\psi_{0}(y)=\frac{n-2}{2} U_{1}(y)+y \nabla U_{1}(y)$. From integration by parts, (3.49) and $y \cdot \nabla Q(y)=\beta Q(y)$, we have

$$
\begin{align*}
&-\int_{\mathbb{R}^{n}} Q(y+\xi) U_{1}^{\frac{n+2}{n-2}}(y) \psi_{0}(y) d y \\
&=\frac{n-2}{2 n} \int_{\mathbb{R}^{n}} y \cdot \nabla Q(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y \tag{3.51}\\
& \quad=\frac{\beta(n-2)}{2 n} \int_{\mathbb{R}^{n}} Q(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y \neq 0
\end{align*}
$$

The last term does not vanish due to (K1).
Recall $L_{i}\left(x_{i}\right)^{n-2} \sim t_{i}^{-1} \hat{M}_{i}^{\frac{2 \beta}{n-2}}$. Putting (3.50), (3.51) and (3.48) together these estimates, we have

$$
\begin{aligned}
L_{i}\left(x_{i}\right)^{2-n} & \leq c\left|\int_{B_{\hat{r}_{i}}} \widetilde{Q}_{i} U_{i}^{\frac{n+2}{n-2}} \psi_{0}(y) d y\right| \\
& \leq c\left(L_{i}\left(x_{i}\right)^{1-n}+\hat{M}_{i}^{-2}\right),
\end{aligned}
$$

which yields a contradiction to (3.45). Therefore, the proof of Theorem 2.1 is complete. q.e.d.

4. The method of localizing blow-up points

In this section, we will employ the method of localization of blow-up points to prove Theorem 2.4 and Theorem 2.5. This technique was due to R. Schoen. In the previous work [9], we have used this method to prove the isolatedness of blow-up points. For other applications of this method, see [17], [18]. We begin with the following lemma.

Lemma 4.1. Let δ, σ and ε be small positive numbers and $R>1$. Then there exist positive constants $R=R(\delta, \sigma)$ and $C_{0}=C_{0}(\delta, \sigma, R, \varepsilon)$ independent of i such that the following statements hold:
(i) If $u_{i}\left(y_{0}\right)\left|y_{0}\right|^{\frac{n-2}{2}} \geq C_{0}$, then there exists a local maximum point $z \in B\left(y_{0}, 2 \delta\left|y_{0}\right|\right)$ of u_{i} such that

$$
\begin{equation*}
u_{i}\left(y_{0}\right) \leq u_{i}(z) \tag{4.1}
\end{equation*}
$$

and the rescaled function

$$
v_{i}(y)=u_{i}(z)^{-1} u_{i}\left(u_{i}(z)^{-\frac{2}{n-2}} y+z\right)
$$

satisfies

$$
\left\{\begin{array}{l}
\text { the origin } 0 \text { is the only local maximum point of } v_{i} \tag{4.2}\\
\text { in } B(0,4 R), \text { and }\left|v_{i}-U_{1}\right|_{C^{2}(B(0,4 R))} \leq \sigma(4 R)^{2-n}
\end{array}\right.
$$

(ii) Let $\left\{z_{j}^{i}\right\}_{j=1}^{s_{i}}$ denote all local maximum points of u_{i} in the ball \bar{B}_{1} which satisfy $u_{i}\left(z_{j}^{i}\right)\left|z_{j}^{i}\right|^{\frac{n-2}{2}} \geq C_{0}$ and (4.2) with $z=z_{j}^{i}$. Assume $u_{i}\left(z_{1}^{i}\right) \geq u_{i}\left(z_{2}^{i}\right) \cdots \geq u_{i}\left(z_{s_{i}}^{i}\right)$. Then
(a) $u_{i}(y) \leq 2 C_{0}|y|^{-\frac{n-2}{2}}$ for $y \notin \Omega_{i}$ where $\Omega_{i}=\cup_{j} B\left(z_{j}^{i}, 2 \delta\left|z_{j}^{i}\right|\right)$. Furthermore,

$$
\left|z_{j}^{i}-z_{k}^{i}\right| \geq 4 R u_{i}\left(z_{j}^{i}\right)^{-\frac{2}{n-2}}
$$

for $j \neq k$.
(b) $u_{i}(x) \leq 2 u_{i}\left(z_{j}^{i}\right)$ holds for $x \in B\left(z_{j}^{i}, 2 \delta\left|z_{j}^{i}\right|\right)$ and

$$
\begin{equation*}
\left|z_{j}^{i}\right| \leq \varepsilon\left|z_{k}^{i}\right| \quad \text { for } \quad j<k \leq s_{i} . \tag{4.3}
\end{equation*}
$$

Lemma 4.1 can be proved by the blow-up method of Schoen and the method of moving planes, Lemma 3.1. See Lemma 4.1-Lemma 4.4 in [9]. In fact, we can prove more in Lemma 4.2 below. In the following, z_{j}^{i} is indexed by the ordering $u_{i}\left(z_{1}^{i}\right) \geq \ldots \geq u_{i}\left(z_{s_{i}}^{i}\right)$.

Lemma 4.2. Let $\left\{z_{j}^{i}\right\}_{j=1}^{s_{i}}$ be the local maximum points in Lemma 4.1 and $\delta>0$ be a small number. Then we have the following statements if the positive constant C_{0} in Lemma 4.1 is large enough.
(i) The inequality

$$
L_{i}\left(z_{j}^{i}\right) \geq\left(\delta u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\left|z_{j}^{i}\right|\right)^{\frac{n-1}{n-2}}
$$

holds for $1 \leq j \leq s_{i}$.
(ii) Let

$$
L_{i}^{*}\left(z_{j}^{i}\right)=\min \left(L_{i}\left(z_{j}^{i}\right), u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\right)
$$

and

$$
D_{j}^{i}=\left\{y:\left|y-z_{j}^{i}\right| \leq c L_{i}^{*}\left(z_{j}^{i}\right) u_{i}\left(z_{j}^{i}\right)^{-\frac{2}{n-2}}\right\}
$$

with c small. Then

$$
z_{k}^{i} \notin D_{j}^{i}
$$

when $k>j$.
Proof. We follow notations in Section 3. Let v_{i} be defined in (2.13) with $z_{i}=z_{j}^{i}$ and U_{i} be the solution to (3.15) with $K_{0}=K_{i}\left(z_{i}\right)$.

We may assume C_{0} is very large. If $1<\beta<n$, by (2.15) and $u_{i}\left(z_{j}^{i}\right)\left|z_{j}^{i}\right|^{\frac{n-2}{2}} \geq C_{0}$, we have

$$
u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\left|z_{j}^{i}\right|^{1-\beta}=\left(u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\left|z_{j}^{i}\right|\right)^{1-\beta} u_{i}\left(z_{j}^{i}\right)^{\frac{2 \beta}{n-2}}<u_{i}\left(z_{j}^{i}\right)^{\frac{2 \beta}{n-2}}
$$

and

$$
\begin{equation*}
L_{i}\left(z_{j}^{i}\right)=\left(t_{i}^{-1} u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\left|z_{j}^{i}\right|^{1-\beta}\right)^{\frac{1}{n-2}} . \tag{4.4}
\end{equation*}
$$

If $\beta \geq n$ and $L_{i}\left(z_{j}^{i}\right) \neq\left(t_{i}^{-1} u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\left|z_{j}^{i}\right|^{1-\beta}\right)^{\frac{1}{n-2}}$, then by (2.15),

$$
L_{i}\left(z_{j}^{i}\right)=\left(t_{i}^{-1} u_{i}\left(z_{j}^{i}\right)^{\frac{2 \hat{B}}{n-2}}\right)^{\frac{1}{n-2}} \geq\left(u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\left|z_{j}^{i}\right|\right)^{\frac{n-1}{n-2}}
$$

for large i since $\hat{\beta}>n-1$, that is, (i) holds in this case. Hence in order to prove (i), we may assume $L_{i}\left(z_{j}^{i}\right)=\left(t_{i}^{-1} u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\left|z_{j}^{i}\right|^{1-\beta}\right)^{\frac{1}{n-2}}$ and $1<\beta<n$.

Let δ be small enough, $M_{i}=u_{i}\left(z_{j}^{i}\right), L_{i}=L_{i}\left(z_{j}^{i}\right)$ and

$$
r_{i}=\delta \min \left(L_{i}, M_{i}^{\frac{2}{n-2}}\left|z_{j}^{i}\right|\right)
$$

Then by (b) of part (ii) in Lemma 4.1,

$$
v_{i}(y) \leq 2 \text { for }|y| \leq r_{i} .
$$

By Lemma 3.1, Lemma 3.4 and Lemma 3.5, we have

$$
v_{i}(x) \leq c U_{i}(x)
$$

and

$$
\left|v_{i}(x)-U_{i}(x)\right| \leq c r_{i}^{-2+n}
$$

for $|x| \leq r_{i}$, where c is a constant independent of δ and i. For the sake of simplicity, δ always denotes a small positive number, but could change from line to line. Assume $\nabla \hat{K}\left(z_{j}^{i}\right)$ is in the direction $e_{1}=(1,0, \cdots, 0)$. Let $\psi_{1}=\frac{\partial U_{i}}{\partial y_{1}}$. By (3.32) of Lemma 3.5,

$$
\begin{equation*}
\left|\int_{|x| \leq r_{i}} \widetilde{Q}_{i} U_{i}^{\frac{n+2}{n-2}} \psi_{1} d x\right| \leq c_{1} r_{i}^{-n+1} \tag{4.5}
\end{equation*}
$$

By (3.40), we have

$$
-\widetilde{Q}_{i}(y)=t_{i} M_{i}^{-\frac{2}{n-2}}\left|\nabla \hat{K}\left(z_{j}^{i}\right)\right|\left(y_{1}+o(1)|y|\right)
$$

for $|y| \leq r_{i}$, where $o(1)$ could be arbitrarily small if δ is small. Since $\psi_{1}(y) y_{1} \geq 0$, we have

$$
\begin{equation*}
\left|\int_{B_{r_{i}}} \widetilde{Q}_{i} U_{i}^{\frac{n+2}{n-2}} \psi_{1} d y\right| \geq c_{2} t_{i} M_{i}^{-\frac{2}{n-2}}\left|z_{j}^{i}\right|^{\beta-1} \tag{4.6}
\end{equation*}
$$

for some $c_{2}>0$. Since we assume $L_{i}\left(z_{j}^{i}\right)=\left(t_{i}^{-1} u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\left|z_{j}^{i}\right|^{1-\beta}\right)^{\frac{1}{n-2}}$, it follows from (4.5) and (4.6) that

$$
\begin{equation*}
L_{i}^{-n+2} \leq c_{3} r_{i}^{-n+1} \tag{4.7}
\end{equation*}
$$

Since $r_{i} \leq L_{i}, C_{0}$ is large and $L_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$, we conclude r_{i} / L_{i} is small from (4.7). Thus $r_{i}=\delta u_{i}\left(z_{j}^{i}\right)^{\frac{2}{n-2}}\left|z_{j}^{i}\right|$. Since both c_{1} and c_{2} are
independent of δ and i, part (i) of Lemma 4.2 follows from (4.7) if δ is chosen to be small enough.

We prove (ii) by contradiction. Assume that after passing to a sequence, there exists $j_{i}<k_{i}$ such that $z_{k_{i}}^{i} \in D_{j_{i}}^{i}$ and both $u_{i}\left(z_{j_{i}}^{i}\right)\left|z_{j_{i}}^{i}\right|^{\frac{n-2}{2}}$ and $u_{i}\left(z_{k_{i}}^{i}\right)\left|z_{k_{i}}^{i}\right|^{\frac{n-2}{2}}$ tend to $+\infty$. For simplicity of notations, we let $z_{i}=z_{j_{i}}^{i}$ and $w_{i}=z_{k_{i}}^{i}$. Recall that u_{i} satisfies

$$
\begin{equation*}
u_{i}\left(w_{i}\right) \leq u_{i}\left(z_{i}\right) \tag{4.8}
\end{equation*}
$$

Let $M_{i}=u_{i}\left(z_{i}\right)$ and $v_{i}(y)$ be the solution in (2.13) scaled with respect to the local maximum point z_{i}. Since $M_{i}^{\frac{2}{n-2}}\left|z_{i}\right| \rightarrow+\infty$ and (4.2) holds, we have for any $\sigma>0$, by Lemma 3.1

$$
\begin{equation*}
\min _{|y| \leq r} v_{i}(y) \leq(1+2 \sigma) U_{1}(r) \tag{4.9}
\end{equation*}
$$

if i is large and $0 \leq r \leq 4 d_{0} L_{i}^{*}\left(z_{i}\right)$ with some $d_{0}=d_{0}(\sigma)>0$. Let $l_{i}=d_{0} L_{i}^{*}\left(z_{i}\right)$. Applying Lemma 3.5 with an empty set $E, l_{0}=M_{i}^{\frac{2}{n-2}}$ and $l=l_{i}$, there is a constant c_{1} independent of σ and i

$$
\begin{equation*}
\int_{R \leq|y| \leq l_{i}} v_{i}^{\frac{n+2}{n-2}}(y) d y \leq c_{1} \sigma \tag{4.10}
\end{equation*}
$$

provided that $d_{0}<\sigma^{\frac{1}{2}}$ and $R \geq \sigma^{-\frac{1}{2}}$.
Set

$$
B_{i}=\left\{x| | x-w_{i} \left\lvert\, \leq u_{i}\left(w_{i}\right)^{-\frac{2}{n-2}}\right.\right\}
$$

and

$$
\hat{B}_{i}=\left\{y \left\lvert\, M_{i}^{-\frac{2}{n-2}}\left(y+z_{i}\right) \in B_{i}\right.\right\}
$$

By (ii) of Lemma 4.1 and (4.8),

$$
4 R \leq u_{i}\left(w_{i}\right)^{\frac{2}{n-2}}\left|z_{i}-w_{i}\right| \leq M_{i}^{\frac{2}{n-2}}\left|z_{i}-w_{i}\right| \leq c L_{i}^{*}\left(z_{i}\right)
$$

because $w_{i} \in D_{i}$. By (ii) of Lemma 4.1, we have $\left|z_{i}\right|=o(1)\left|w_{i}\right|$ and

$$
\begin{aligned}
& M_{i}^{\frac{2}{n-2}} u_{i}\left(w_{i}\right)^{-\frac{2}{n-2}} \ll M_{i}^{\frac{2}{n-2}}\left|w_{i}\right| \\
& \quad=(1+o(1)) M_{i}^{\frac{2}{n-2}}\left|z_{i}-w_{i}\right| \leq c L_{i}^{*}\left(z_{i}\right)
\end{aligned}
$$

Thus, $B_{i} \subseteq 2 D_{i}$.
Since $u_{i}(x) \leq u_{i}\left(w_{i}\right) \leq u_{i}\left(z_{i}\right)$ for $x \in B_{i}$, we have $v_{i}(y) \leq 1$ for $y \in \hat{B}_{i}$. Since by Lemma $4.1,0$ is the unique local maximum of $v_{i}(y)$
for $|y| \leq 4 R$, we have $\hat{B}_{i} \subseteq\left\{y\left|R \leq|y| \leq l_{i}\right\}\right.$ if the constant c in D_{j}^{i} is small. Again by (i) of Lemma 4.1, we have for some constant $c_{2}>0$,

$$
\begin{aligned}
0<c_{2} & \leq \int_{B_{i}} u_{i}^{\frac{2 n}{n-2}}(x) d x=\int_{\hat{B}_{i}} v_{i}^{\frac{2 n}{n-2}} d y \leq \int_{\hat{B}_{i}} v_{i}^{\frac{n+2}{n-2}}(y) d y \\
& \leq \int_{R \leq|y| \leq l_{i}} v_{i}^{\frac{n+2}{n-2}}(y) d y \leq c_{1} \sigma,
\end{aligned}
$$

which yields a contradiction if σ is small enough. Therefore, (ii) is proved. q.e.d.

Proof of Theorem 2.4. Let $L_{i}=L_{i}\left(x_{i}\right)$ and $\hat{M}_{i}=u_{i}\left(x_{i}\right)$. Suppose that $L_{i} \hat{M}_{i}^{-\frac{2}{n-2}} \rightarrow+\infty$, then by Theorem 2.1, 0 is a simple blowup point and u_{i} loses the energy of one bubble at 0 . Therefore, we suppose that $\lim _{i \rightarrow+\infty} L_{i} \hat{M}_{i}^{-\frac{2}{n-2}}<+\infty$.

By Theorem 2.2, $\hat{M}_{i}^{\frac{2}{n-2}}\left|x_{i}\right|^{\frac{n-2}{2}}$ is bounded, $\beta<n-2$ and $\xi=$ $\lim _{i \rightarrow+\infty} \hat{M}_{i}^{\frac{2}{n-2}} x_{i}$ satisfies (2.16). From the definition (2.15) of L_{i}, we have $L_{i}\left(x_{i}\right) \sim\left(t_{i}^{-1} \hat{M}_{i}^{\frac{2 \beta}{n-2}}\right)^{\frac{1}{n-2}}$. Applying Lemma 3.1 and Lemma 3.5, u_{i} satisfies

$$
\begin{equation*}
c_{1} \hat{M}_{i}^{-1}|x|^{2-n} \leq u_{i}(x) \leq c_{2} \hat{M}_{i}^{-1}|x|^{2-n} \tag{4.11}
\end{equation*}
$$

for

$$
\hat{M}_{i}^{-\frac{2}{n-2}} \leq|x| \leq \delta\left(t_{i}^{-1} \hat{M}_{i}^{\frac{2 \beta}{n-2}-2}\right)^{\frac{1}{n-2}}
$$

with a small $\delta>0$. Let $r_{i}=\delta\left(t_{i}^{-1} \hat{M}_{i}^{\frac{2 \beta}{n-2}-2}\right)^{\frac{1}{n-2}}$. Then, we have

$$
\begin{equation*}
\min _{|x|=r_{i}} u_{i}(x) \sim t_{i} \hat{M}_{i}^{1-\frac{2 \beta}{n-2}} . \tag{4.12}
\end{equation*}
$$

Now suppose

$$
\lim _{i \rightarrow+\infty} \sup _{\bar{B}_{2}}\left(u_{i}(x)|x|^{\frac{n-2}{2}}\right)=+\infty .
$$

Let $z_{i}=z_{1}^{i}$, where z_{1}^{i} is the local maximum point in Lemma 4.2. Let $M_{i}=u_{i}\left(z_{i}\right)$. Since $M_{i}^{\frac{2}{n-2}}\left|z_{i}\right| \geq C_{0}$ is very large, we have

$$
\begin{equation*}
L_{i}\left(z_{i}\right) \leq\left(t_{i}^{-1} M_{i}^{\frac{2 \beta}{n-2}}\right)^{\frac{1}{n-2}} \tag{4.13}
\end{equation*}
$$

and by (i) of Lemma 4.2,

$$
\begin{equation*}
M_{i}^{\frac{2}{n-2}}\left|z_{i}\right| \ll L_{i}\left(z_{i}\right) \tag{4.14}
\end{equation*}
$$

Since $u_{i}(x)$ is a positive superharmonic function, there exists a small constant $c>0$ such that

$$
\begin{equation*}
u_{i}\left(z_{i}+x\right) \geq c M_{i}^{-1}\left(|x|^{2-n}-(3 / 2)^{2-n}\right) \tag{4.15}
\end{equation*}
$$

for $M_{i}^{-\frac{2}{n-2}} \leq|x| \leq \frac{3}{2}$. In particular, we have

$$
\begin{equation*}
\min _{\left|x-z_{i}\right| \leq \min \left(\hat{r}_{i}, 1\right)} u_{i}(x) \geq c M_{i}^{-1} \hat{r}_{i}^{2-n} \geq c t_{i} M_{i}^{1-\frac{2 \beta}{n-2}} \tag{4.16}
\end{equation*}
$$

where $\hat{r}_{i}=\left(t_{i}^{-1} M_{i}^{\frac{2 \beta}{n-2}-2}\right)^{\frac{1}{n-2}}$. Since $u_{i}(x)$ has the only maximum point x_{i} in the region $\left\{x\left||x| \leq r_{i}\right\}\right.$, we have by (4.14)

$$
r_{i} \leq\left|z_{i}\right| \ll \hat{r}_{i}
$$

namely, the ball $B_{r_{i}}(0)$ is contained inside of the ball $B\left(z_{i}, \hat{r}_{i}\right)$. Hence, if \hat{r}_{i} is bounded, by (4.12), (4.16) and the maximum principle, we have

$$
\begin{aligned}
t_{i} \hat{M}_{i}^{1-\frac{2 \beta}{n-2}} \sim \min _{|x|=r_{i}} u_{i} & \geq \min _{\left|x-z_{i}\right| \leq \hat{r}_{i}} u_{i} \\
& \geq c t_{i} M_{i}^{1-\frac{2 \beta}{n-2}}
\end{aligned}
$$

First we consider the case when $\beta>\frac{n-2}{2}$. Since $\beta>\frac{n-2}{2}$ and \hat{M}_{i} is the maximum of u_{i}, it implies $\hat{M}_{i} \sim M_{i}$. Hence, the function $v_{i}(y)$ rescaled with respect to the center z_{i} satisfies

$$
v_{i}(y) \leq c
$$

for some constant $c>0$ and $|y| \leq M_{i}^{\frac{2}{n-2}}$. Thus, $v_{i}(y) \sim U_{1}(y)$ for $|y| \leq \delta L_{i}\left(z_{i}\right)$ by Lemma 3.4. Particularly, we have

$$
\hat{M}_{i} \sim M_{i} U_{1}\left(\left|z_{i}\right| M_{i}^{\frac{2}{n-2}}\right)=M_{i}\left(M_{i}\left|z_{i}\right|^{\frac{n-2}{2}}\right)^{-2}=o(1) M_{i}
$$

which obviously yields a contradiction.

For the case $\beta=\frac{n-2}{2}$, we have by (4.14), (4.15) and the maximum principle,

$$
\begin{aligned}
t_{i} & =t_{i} \hat{M}_{i}^{1-\frac{2 \beta}{n-2}} \sim \min _{|x|=r_{i}} u_{i} \\
& \geq \min _{\left|x-z_{i}\right| \leq 2\left|z_{i}\right|} u_{i} \geq c M_{i}^{-1}\left|z_{i}\right|^{2-n},
\end{aligned}
$$

which implies

$$
\hat{r}_{i}=\left(t_{i}^{-1} M_{i}^{-1}\right)^{\frac{1}{n-2}} \leq c\left|z_{i}\right| .
$$

But by (4.14), $\left|z_{i}\right| \ll \hat{r}_{i}$ for large i. Thus, we obtain a contradiction and then (2.18) is proved.

Once that (2.18) is established, (1.8) follows from Lemma 5.2 of Section 5. Also, from (2.18), the energy outside the region, where u_{i} is not simple, tends to zero. Therefore (2.17) is obtained, and then Theorem 2.4 is proved. q.e.d.

Proof of Theorem 2.5. Suppose that u_{i} satisfies

$$
\lim _{i \rightarrow+\infty} \sup _{\bar{B}_{2}}\left(u_{i}(x)|x|^{\frac{n-2}{2}}\right)=+\infty
$$

Assume that 0 is not a simple blowup point. Then $\beta<n-2$ by Corollary 2.3. Let δ, R, C_{0} and the local maximum points $\left\{z_{j}^{i}\right\}_{j=1}^{s_{i}}$ of u_{i} satisfy the assumptions of Lemma 4.1 and Lemma 4.2. We will prove $s_{i}=1$ for i large.

Let $z_{i}=z_{1}^{i}, L_{i}=L_{i}\left(z_{i}\right), M_{i}=u_{i}\left(z_{i}\right)$ and $v_{i}(y)$ be the scaled function defined in (2.13). We claim

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} L_{i} M_{i}^{-\frac{2}{n-2}}=+\infty \tag{4.17}
\end{equation*}
$$

We prove (4.17) by contradiction. Suppose

$$
\lim _{i \rightarrow+\infty} L_{i} M_{i}^{-\frac{2}{n-2}}<+\infty
$$

Then for any small number $\sigma>0$, by Lemma 3.1 and Lemma 3.5, there is a small positive number $d_{0}=d_{0}(\sigma)$ such that

$$
\begin{equation*}
\min _{|y|=r} v_{i}(y) \leq(1+\sigma) U_{1}(r) \tag{4.18}
\end{equation*}
$$

for $0 \leq r \leq d_{0} L_{i}$, and

$$
\begin{equation*}
\int_{R \leq|x| \leq d_{0} L_{i}} v_{i}^{\frac{n+2}{n-2}}(y) d y \leq c_{1}\left(\sigma+R^{-2}+\left(\frac{d_{0} L_{i}}{L_{i}}\right)^{n-2}\right) \equiv c_{1} \widetilde{\sigma} \tag{4.19}
\end{equation*}
$$

where R is very large and c_{1} is a positive constant independent of σ and i. Note that $L_{i}^{*}\left(d_{0}\right)=\min \left(d_{0} L_{i}, M_{i}^{\frac{2}{n-2}}\right)=d_{0} L_{i}$ due to the assumption $L_{i} \leq c M_{i}^{\frac{2}{n-2}}$.

Let Ω_{i} be the set in Lemma 4.1. Let σ be a small positive number, which will be chosen later. For $|x| \geq \delta\left|z_{i}\right|$ and $z \notin \Omega_{i}$, we have by Lemma 4.1,

$$
u_{i}(x)|x|^{\frac{n-2}{2}} \leq 2 C_{0} \leq 2 M_{i}\left|z_{i}\right|^{\frac{n-2}{2}}
$$

for i large, which implies that

$$
u_{i}(x) \leq c M_{i}
$$

for some $c=c(\delta)>0$. If $x \in \Omega_{i}$, then for some j,

$$
u_{i}(x) \leq 2 u_{i}\left(z_{j}^{i}\right) \leq 2 u_{i}\left(z_{i}\right) .
$$

Hence, there is $c_{1}=c_{1}(\delta)>0$ such that

$$
\begin{equation*}
u_{i}(x) \leq c_{1} M_{i} \tag{4.20}
\end{equation*}
$$

for $|x| \geq \delta\left|z_{i}\right|$.
If σ and d_{0} are small and R is large, then by (4.19) and (4.20), Lemma 3.5 can be applied to obtain the Harnack inequality for $v_{i}(y)$ on each sphere $|y|=r \leq d_{0} L_{i}$ if the annulus $\left\{y\left|\frac{r}{2} \leq|y| \leq 2 r\right\}\right.$ does not intersect with the set $\left\{\left.y\left|\left|y+M_{i}^{\frac{2}{n-2}} z_{i}\right| \leq \delta M_{i}^{\frac{2}{n-2}}\right| z_{i} \right\rvert\,\right\}$. In particular,

$$
\begin{equation*}
v_{i}(y) \leq c U_{i}(y) \tag{4.21}
\end{equation*}
$$

holds for $2 M_{i}^{\frac{2}{n-2}}\left|z_{i}\right| \leq|y| \leq d_{0} L_{i}$, where c is a constant independent of i and δ. Let

$$
\begin{equation*}
r_{i}=d_{0} L_{i} M_{i}^{-\frac{2}{n-2}} . \tag{4.22}
\end{equation*}
$$

Going back to the function u_{i}, (4.21) implies

$$
\begin{equation*}
u_{i}\left(z_{i}+x\right)+|x|\left|\nabla u\left(z_{i}+x\right)\right| \leq c M_{i}^{-1}|x|^{2-n} \tag{4.23}
\end{equation*}
$$

for $2 \delta\left|z_{i}\right| \leq|x| \leq r_{i}$.

Let $e_{i}=\left|\nabla \hat{K}\left(z_{i}\right)\right|^{-1} \nabla \hat{K}\left(z_{i}\right)$ and $e=\lim _{i \rightarrow+\infty} e_{i}$. Applying the Pohozaev identity,

$$
\begin{align*}
\frac{n-2}{2 n} & \int_{B\left(z_{i}, r_{i}\right)}\left\langle e, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x \\
= & \int_{\partial B\left(z_{i}, r_{i}\right)}[
\end{aligned} \quad \begin{aligned}
& \left\langle e, \nabla u_{i}\right\rangle \frac{\partial u_{i}}{\partial \nu}-\langle e, \nu\rangle \frac{\left|\nabla u_{i}\right|^{2}}{2} \tag{4.24}\\
& \\
& \left.\quad+\frac{n-2}{2 n}\langle e, \nu\rangle K_{i} u_{i}^{\frac{2 n}{n-2}}\right] d \sigma .
\end{align*}
$$

By (4.23), the right hand side of (4.24) is dominated by $r_{i}^{-n+1} M_{i}^{-2}$. To find a lower bound, we decompose $B\left(z_{i}, r_{i}\right)$ into four parts: $A_{1}=\{x \mid$ $\left.\left|x-z_{i}\right| \leq M_{i}^{-\frac{2}{n-2}} R_{0}\right\}, A_{2}=\left\{x| | x|\leq 3 \delta| z_{i} \mid\right\}, A_{3}=\left\{x|3 \delta| z_{i}|\leq|x| \leq\right.$ $\left.2\left|z_{i}\right|,\left|z_{i}-x\right| \geq M_{i}^{-\frac{2}{n-2}} R_{0}\right\}$ and $A_{4}=\left\{x|2| z_{i}\left|\leq|x| \leq r_{i}\right\}\right.$, where R_{0} is a positive number.

For $x \in A_{2}$, we have by Lemma 4.1

$$
u_{i}(x) \leq 2 C_{0}|x|^{-\frac{n-2}{2}} .
$$

Then

$$
\begin{equation*}
\int_{A_{2}}\left|\nabla K_{i}\right| u_{i}^{\frac{2 n}{n-2}}(x) d x \leq c_{2}\left(\delta\left|z_{i}\right|\right)^{\beta-1} t_{i} . \tag{4.25}
\end{equation*}
$$

For $x \in A_{3}$, we have

$$
\int_{A_{3}}\left|\nabla K_{i}\right| u_{i}^{\frac{2 n}{n-2}}(x) d x \leq c t_{i}\left|z_{i}\right|^{\beta-1} \int_{A_{3}} u_{i}^{\frac{2 n}{n-2}}(x) d x .
$$

By (4.19) and $v_{i}(y) \leq c_{1}(\delta)$, we have

$$
\begin{align*}
\int_{A_{3}}\left|\nabla K_{i}\right| u_{i}^{\frac{2 n}{n-2}} d x & \leq c t_{i}\left|z_{i}\right|^{\beta-1} \int_{R_{0} \leq|y| \leq d_{0} L_{i}} v_{i}^{\frac{2 n}{n-2}}(y) d y \tag{4.26}\\
& \leq c t_{i}\left|z_{i}\right|^{\beta-1}\left(c_{2}(\delta) \widetilde{\sigma}+R_{0}^{-n}\right)
\end{align*}
$$

where the estimate,

$$
\int_{R_{0} \leq|y| \leq R} v_{i}^{\frac{2 n}{n-2}}(y) d y \leq c \int_{R_{0} \leq|y| \leq R}|y|^{-2 n} d y \leq c R_{0}^{-n}
$$

is used.

For $x \in A_{4}$, we apply (4.21)

$$
u_{i}(x) \leq c M_{i}^{-1}|x|^{2-n} .
$$

Hence

$$
\begin{align*}
\int_{A_{4}} \mid & \nabla K_{i} \left\lvert\, u_{i}^{\frac{2 n}{n-2}}(x) d x\right. \\
& \leq c t_{i} M_{i}^{-\frac{2 n}{n-2}} \int_{A_{4}}|x|^{-2 n+\beta-1} d x \tag{4.27}\\
& \leq c t_{i} M_{i}^{-\frac{2 n}{n-2}}\left|z_{i}\right|^{-(n+1)+\beta} \\
& =c\left(t_{i}\left|z_{i}\right|^{\beta-1}\right)\left(M_{i}\left|z_{i}\right|^{\frac{n-2}{2}}\right)^{\frac{-2 n}{n-2}} .
\end{align*}
$$

For $x \in A_{1}$, we have a positive $c_{0}>0$ such that

$$
\begin{equation*}
\int_{A_{1}}\left\langle e, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \geq c_{0}\left(t_{i}\left|z_{i}\right|^{\beta-1}\right) . \tag{4.28}
\end{equation*}
$$

If we chose σ, d_{0} to be small and R_{0} to be large, then by (4.25) $\sim(4.28)$, the left hand side of (4.24) has

$$
\begin{equation*}
\int_{B\left(z_{i}, r_{i}\right)}\left\langle e, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x \geq\left(c_{0} / 2\right) t_{i}\left|z_{i}\right|^{\beta-1} \tag{4.29}
\end{equation*}
$$

when i is large. Combining the estimates of both sides of (4.24), one has

$$
t_{i}\left|z_{i}\right|^{\beta-1} \leq c r_{i}^{-n+1} M_{i}^{-2}=c_{1} L_{i}^{-n+1} M_{i}^{\frac{2}{n-2}},
$$

namely,

$$
L_{i}\left(z_{i}\right)^{-n+2} \leq c_{1} L_{i}\left(z_{i}\right)^{-n+1}
$$

which obviously yields a contradiction. Hence (4.17) is proved.
If $s_{i}>1$, then by (4.17), $L_{i}^{*}\left(z_{1}^{i}\right) u_{i}\left(z_{1}^{i}\right)^{-\frac{2}{n-2}} \geq 1$ with $L_{i}^{*}\left(z_{1}^{i}\right)=$ $\min \left(L_{i}\left(z_{i}\right), u_{i}\left(z_{i}\right)^{\frac{2}{n-2}}\right)$ defined in Lemma 4.2. Since $z_{2}^{i} \notin D_{1}^{i}$, we have $\left|z_{2}^{i}\right| \geq c_{2}$ for some $c_{2}>0$. On the other hand, by (2.11) and the Harnack inequality, we have u_{i} converges to 0 uniformly on any compact subset of $B_{1} \backslash\{0\}$. Thus,

$$
u_{i}\left(z_{2}^{i}\right) \leq \max _{|x|=c_{2}} u_{i}(x) \rightarrow 0 \text { as } i \rightarrow+\infty,
$$

which yields a contradiction again. Therefore, $s_{i}=1$. We note that $x_{i} \neq z_{i}$ because 0 is not a simple blowup point. The other conclusions of Theorem 2.5 follow from (4.17) and the lemmas in Section 3. Hence, the proof of Theorem 2.5 completely finished. q.e.d.

5. An ODE approach

In this sectin, we consider a sequence of solution u_{i} of (2.11) such that

$$
\begin{align*}
& \sup _{|x| \leq 1}\left(u_{i}(x)|x|^{\frac{n-2}{2}}\right) \leq c_{1} \text { and } u_{i}(x) \text { converges } \tag{5.1}\\
& \quad \text { to } 0 \text { in } C_{\mathrm{loc}}^{2}\left(\bar{B}_{1} \backslash\{0\}\right) .
\end{align*}
$$

From (5.1) and the theory of elliptic equations, it is easy to see

$$
\max _{|x|=r} u_{i}(x) \leq c \min _{|x|=r} u_{i}(x)
$$

for $0 \leq r \leq \frac{1}{2}$ and some $c>0$ depending on c_{1} only. Let $\bar{u}_{i}(r), w_{i}(s), s_{i}$, M_{i} and L_{i} are defined in (2.26) $\sim(2.31)$, respectively. By (5.1), $w_{i}(s) \leq$ c_{1} for $s \leq 0$. Throughout this section, we set

$$
\begin{equation*}
R_{i}=L_{i}^{\gamma} \text { and } \gamma=\frac{1}{1-\frac{2 \beta}{n-2}} \tag{5.2}
\end{equation*}
$$

By a straightforward computation, w_{i} satisfies

$$
\begin{equation*}
w_{i}^{\prime \prime}-\left(\frac{n-2}{2}\right)^{2} w_{i}+\bar{K}_{i}(s) w_{i}^{\frac{n+2}{n-2}}=0 \text { for } s \leq 0 \tag{5.3}
\end{equation*}
$$

where

$$
\bar{K}_{i}(s)=\left|\partial B_{e^{s}}(0)\right|^{-1} w_{i}^{-\frac{n+2}{n-2}}(s) \int_{|x|=e^{s}} K_{i}(x)\left(u(x)|x|^{\frac{n-2}{2}}\right)^{\frac{n+2}{n-2}} d \sigma
$$

and $B_{e^{s}}(0)$ is the ball with radius e^{s} and center 0 . Since we assume K_{i} is bounded between two positive constants, by (5.1), there are \hat{a} and \hat{b} such that $\bar{K}_{i}(s)$ satisfies

$$
\begin{equation*}
0<\hat{a} \leq \bar{K}_{i}(s) \leq \hat{b} \tag{5.4}
\end{equation*}
$$

From (5.3) and (5.4), there is a constant $c_{2}>0$ such that if s is a local maximum point of w_{i}, then

$$
\begin{equation*}
w_{i}(s) \geq c_{2}>0 \tag{5.5}
\end{equation*}
$$

In particular, we have $w_{i}\left(s_{i}\right) \geq c_{2}>0$. Since $u_{i}(x)$ converges to zero in $C_{\text {loc }}^{2}\left(\bar{B}_{1} \backslash\{0\}\right), s_{i} \rightarrow-\infty$ as $i \rightarrow+\infty$. Thus, we have by (5.5),

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} M_{i}=+\infty \tag{5.6}
\end{equation*}
$$

We can obtain some basic estimates for w_{i} as in the following. For the proof, see [9]. Let w_{i} be denoted by w.

Lemma 5.1. There is a small number $\epsilon_{0}>0$ and large M such that the following statements hold:
(i) Suppose that $w(s)$ is nonincreasing in $\left(s_{o}, s_{1}\right)$ with $w\left(s_{o}\right) \leq \epsilon_{0}$. Then there exists a constant c depending on \hat{a} and \hat{b} only such that

$$
\begin{equation*}
s_{1}-s_{o} \leq \frac{2}{n-2} \log \frac{w\left(s_{o}\right)}{w\left(s_{1}\right)}+c \tag{5.7}
\end{equation*}
$$

holds. Futhermore, if s_{1} is a local minimum point of w, then

$$
\begin{equation*}
s_{1}-s_{o} \geq \frac{2}{n-2} \log \frac{w\left(s_{o}\right)}{w\left(s_{1}\right)} \tag{5.8}
\end{equation*}
$$

(ii) Suppose that $w(s)$ is nondecreasing in $\left(s_{1}, s_{2}\right)$ with $w\left(s_{2}\right) \leq \epsilon_{0}$. Then there exists a constant c depending on \hat{a} and \hat{b} only such that

$$
\begin{equation*}
s_{2}-s_{1} \leq \frac{2}{n-2} \log \frac{w\left(s_{2}\right)}{w\left(s_{1}\right)}+c \tag{5.9}
\end{equation*}
$$

holds. Futhermore, if s_{1} is a local minimum point of w, then

$$
\begin{equation*}
s_{2}-s_{1} \geq \frac{2}{n-2} \log \frac{w\left(s_{2}\right)}{w\left(s_{1}\right)} \tag{5.10}
\end{equation*}
$$

Proof Theorem 2.7. The proof of Theorem 2.7 is very long. So, we devide it into two steps. The first step is to estimate u_{i} via Lemma 5.1, and the second step can refine the estimate further by using comparison functions. First, we want to prove

Step 1. There is a constant c such that

$$
\begin{equation*}
u_{i}(x) \leq c\left(t_{i} M_{i}^{-1}\right)^{\gamma}|x|^{-n+2} \tag{5.11}
\end{equation*}
$$

for $R_{i}^{-2} M_{i}^{-\frac{2}{n-2}} \leq|x| \leq R_{i}^{-1} M_{i}^{-\frac{2}{n-2}}$, and $\gamma=\left(1-\frac{2 \beta}{n-2}\right)^{-1}$,

$$
\begin{equation*}
u_{i}(x) \leq c M_{i} \tag{5.12}
\end{equation*}
$$

for $R_{i}^{-1} M_{i}^{-\frac{2}{n-2}} \leq|x| \leq M_{i}^{-\frac{2}{n-2}}$,

$$
\begin{equation*}
u_{i}(x) \leq c M_{i}^{-1}|x|^{-n+2} \text { for } M_{i}^{-\frac{2}{n-2}} \leq|x| \leq 1 \tag{5.13}
\end{equation*}
$$

if $L_{i} M_{i}^{-\frac{2}{n-2}} \geq c_{1}>0$, and

$$
u_{i}(x)\left\{\begin{array}{l}
\leq c M_{i}^{-1}|x|^{-n+2} \text { for } M_{i}^{-\frac{2}{n-2}} \leq|x| \leq L_{i} M_{i}^{-\frac{2}{n-2}} \tag{5.14}\\
\leq c M_{i}^{-1} L_{i}^{-n+2} \text { for } L_{i} M_{i}^{-\frac{2}{n-2}} \leq|x| \leq 1
\end{array}\right.
$$

provided that $\lim _{i \rightarrow+\infty} L_{i} M_{i}^{\frac{-2}{n-2}}=0$.
Recall $w_{i}(s)=\bar{u}_{i}(r) r^{\frac{n-2}{2}}$ with $s=\log r \leq 0$. Let \hat{s}_{i} be a local maximum point of w_{i}. By (5.5), $w_{i}\left(\hat{s}_{i}\right) \geq c>0$. Set $\hat{u}_{i}(x)=\hat{r}_{i}^{\frac{n-2}{2}} u_{i}\left(\hat{r}_{i} x\right)$ with $\hat{r}_{i}=e^{\hat{s}_{i}}$. Then $\hat{u}_{i}(x) \leq c|x|^{\frac{2-n}{2}}$ for $0 \leq|x| \leq \hat{r}_{i}^{-1}$. By passing to a subsequence, $\hat{u}_{i}(x)$ converges to $\hat{U}(x)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. In Lemma 5.2 (below), we will show that $\hat{U}(x)=\left[\hat{\lambda}\left(\hat{\lambda}^{2}+|x-\hat{q}|^{2}\right)^{-1}\right]^{\frac{n-2}{2}}$ for some $\hat{\lambda}>0$ and $\hat{q} \in \mathbb{R}^{n}$. A direct computations show that $\overline{\hat{U}(r)} r^{\frac{n-2}{2}}$ has a unique critical point at $r=\sqrt{\hat{\lambda}^{2}+|q|^{2}}$, which is also nondegenerate. From here, we deduce that for each large $i, w_{i}(s)$ has a sequence of local maximum point $s_{j, i}$ and local minimum point $\underline{s}_{j, i}$ for $j=1,2, \ldots, N(i)$. Such that the following holds:

$$
\begin{equation*}
s_{j, i}<\underline{s}_{j, i}<s_{j+1, i} \text { with } s_{N(i)+1, i}=s_{i}, w(s) \text { is decreasing } \tag{5.15}
\end{equation*}
$$

$$
\text { for } s \in\left(s_{j, i}, \underline{s}_{j, i}\right) \text { and } w(s) \text { is increasing for } s \in\left(\underline{s}_{j, i}, s_{j+1, i}\right)
$$

for $1 \leq j \leq N(i)$. Furthermore, $w\left(\underline{s}_{j, i}\right) \rightarrow 0$ as $i \rightarrow+\infty$ for $j=$ $1,2, \ldots, N(i)$, and,

$$
s_{j+1, i}-\underline{s}_{j, i} \text { and } \underline{s}_{j, i}-s_{j, i} \rightarrow+\infty \text { as } i \rightarrow+\infty
$$

$$
\begin{equation*}
\text { for any } j=1,2, \ldots, N(i) \text {. Consequently, } M_{j, i} / M_{j+1, i} \rightarrow 0 \tag{5.16}
\end{equation*}
$$

$$
\text { as } i \rightarrow+\infty \text { for } y \in\{1,2, \ldots, N(i)\} .
$$

Note that $N(i) \geq 1$ due to the assumption that u_{i} loses the energy of more than one bubble. For $j=1,2, \ldots, N(i)$, we set $\hat{u}_{i}(x)=$ $r_{j, i}^{\frac{n-2}{2}} u_{i}\left(r_{j, i} x\right)$ with $r_{j, i}=e^{s_{j, i}}$ and \hat{U} to be the limit of \hat{u}_{i} in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Then we have

Lemma 5.2. Let \hat{U} be described as above. Then

$$
\begin{equation*}
\hat{U}(x)=\left(\frac{\hat{\lambda}}{\hat{\lambda}^{2}+|x-\hat{q}|^{2}}\right)^{\frac{n-2}{2}} \tag{5.17}
\end{equation*}
$$

where

$$
\begin{equation*}
1=\hat{\lambda}^{2}+|\hat{q}|^{2} \tag{5.18}
\end{equation*}
$$

Furthermore, if set $\xi_{0}=\sqrt{\hat{\lambda}} \hat{q}$, then ξ_{0} satisfies

$$
\begin{gather*}
\int_{\mathbb{R}^{n}} \nabla Q\left(\xi_{0}+y\right) U_{1}^{\frac{2 n}{n-2}}(y) d y=0 \quad \text { and } \tag{5.19}\\
\int_{\mathbb{R}^{n}} Q\left(\xi_{0}+y\right) U_{1}^{\frac{2 n}{n-2}}(y) d y<0 . \tag{5.20}
\end{gather*}
$$

The proof of Lemma 5.2 will be given at the end of this section. Now, we go back to the proof of Step 1. By the remark above, we denote \hat{s}_{i} and \underline{s}_{i} to be the local maximum point $\bar{s}_{N(i), i}$ and local minimum point $\underline{s}_{N(i), i}$, respectively. Since $w_{i}\left(\underline{s}_{i}\right) \rightarrow 0$ as $i \rightarrow+\infty$, there are $\hat{s}_{i}<a_{i}<\underline{s}_{i}<b_{i}<s_{i}$ such that $w_{i}\left(a_{i}\right)=w_{i}\left(b_{i}\right)=\epsilon_{0}$, where ϵ_{0} is the small positive number in Lemma 5.1. By a simple scaling argument,

$$
\begin{equation*}
s_{i}-b_{i} \leq c_{3}=c_{3}\left(\epsilon_{0}\right) \tag{5.21}
\end{equation*}
$$

for some constant c_{3} independent of i. By Lemma 5.1,

$$
\begin{aligned}
\frac{2}{n-2} \log \frac{\epsilon_{0}}{w_{i}\left(\underline{s}_{i}\right)} & \leq \underline{s}_{i}-a_{i}, b_{i}-\underline{s}_{i} \\
& \leq \frac{2}{n-2} \log \frac{\epsilon_{0}}{w_{i}\left(\underline{s}_{i}\right)}+c .
\end{aligned}
$$

To obtain some estimate for $\underline{s}_{i}-a_{i}$ and $b_{i}-\underline{s}_{i}$, we need to find upper and lower bounds for $w_{i}\left(\underline{s}_{i}\right)$. First, we show that

$$
\begin{equation*}
\left(\min _{|x|=r_{i}} u_{i}\right)^{-1} \max _{|x|=r_{i}} u_{i} \rightarrow 1 \text { and } r_{i}=e^{s_{i}} . \tag{5.23}
\end{equation*}
$$

uniformly as $i \rightarrow \infty$. To see it, let \hat{x}_{i} be any sequence of points with $\left|\hat{x}_{i}\right|=r_{i}$. Let $h_{i}(\eta)=u_{i}\left(\hat{x}_{i}\right)^{-1} u_{i}\left(r_{i} \eta\right)$. Since $w_{i}\left(\underline{s}_{i}\right) \rightarrow 0$ as $i \rightarrow+\infty$, after passing to a subsequence, $h_{i}(\eta)$ converges to $h(\eta)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and satisfies

$$
\begin{equation*}
\Delta h(\eta)=0 \text { in } \mathbb{R}^{n} \backslash\{0\} \tag{5.24}
\end{equation*}
$$

Let $\bar{h}(r)$ be the spherical average of h. Since \underline{s}_{i} is a local minimum point of w_{i}, we have

$$
\begin{equation*}
\frac{d}{d r}\left(\bar{h}(r) r^{\frac{n-2}{2}}\right)=0 \text { at } r=1 . \tag{5.25}
\end{equation*}
$$

By the Liouville Theorem, (5.25) implies

$$
\left\{\begin{array}{l}
h(\eta)=a|\eta|^{2-n}+b \tag{5.26}\\
a=b>0
\end{array}\right.
$$

Clearly, from it we obtain (5.23) and

$$
\begin{equation*}
\left|\nabla u_{i}\right|(x)=-\bar{u}_{i}^{\prime}\left(r_{i}\right)(1+o(1)) \tag{5.27}
\end{equation*}
$$

for $|x|=r_{i}$ as $i \rightarrow+\infty$. By (5.23) and (5.27), the Pohozaev identity implies

$$
\begin{align*}
P\left(r_{i}, u_{i}\right)= & \left|S^{n-1}\right|\left\{\frac{1}{2} w_{i}^{\prime 2}\left(\underline{s}_{i}\right)-\frac{1}{2}\left(\frac{n-2}{2}\right)^{2} w_{i}^{2}\left(\underline{s}_{i}\right)\right\} \tag{5.28}\\
& +o(1)\left(w_{i}^{\prime 2}\left(\underline{s}_{i}\right)+w_{i}^{2}\left(\underline{s}_{i}\right)\right)
\end{align*}
$$

where

$$
\begin{equation*}
P\left(r ; u_{i}\right)=\frac{n-2}{2 n} \int_{|x| \leq r}\left(x \cdot \nabla K_{i}\right) u_{i}^{\frac{2 n}{n-2}}(x) d x . \tag{5.29}
\end{equation*}
$$

Hence,

$$
\begin{align*}
(1+o(1)) w_{i}^{2}\left(\underline{s}_{i}\right)= & -c_{n} P_{n}\left(r_{i}, u_{i}\right) \\
\leq & c_{n}\left\{\int_{e^{a_{i} \leq|x| \leq r_{i}}}|x||\nabla K(x)| u_{i}^{\frac{2 n}{n-2}} d x\right. \tag{5.30}\\
& \left.+\int_{|x| \leq e^{a_{i}}}|x||\nabla K(x)| u_{i}^{\frac{2 n}{n-2}} d x\right\} \\
\equiv & I_{1}+I_{2} .
\end{align*}
$$

Since $\left|\nabla K_{i}(x)\right| \leq c|x|^{\beta-1}$, by (5.1),

$$
\left|I_{2}\right| \leq c t_{i} \exp \left(\beta a_{i}\right) .
$$

By Lemma 5.1, we have for $a_{i} \leq s \leq \underline{s}_{i}$
$c w_{i}\left(\underline{s}_{i}\right) \exp \left[\frac{n-2}{2}\left(\underline{s}_{i}-s\right)\right] \leq w_{i}(s) \leq w_{i}\left(\underline{s}_{i}\right) \exp \left[\frac{n-2}{2}\left(\underline{s}_{i}-s\right)\right]$.

Therefore

$$
\begin{aligned}
\left|I_{1}\right| & \leq c t_{i} w_{i}^{\frac{2 n}{n-2}}\left(\underline{s}_{i}\right) \exp \left(n \underline{s}_{i}\right) \int_{a_{i}}^{\underline{s}_{i}} \exp [(-n+\beta) s] d s \\
& \leq c t_{i} w_{i}^{\frac{2 n}{n-2}}\left(\underline{s}_{i}\right) \exp \left(n \underline{s}_{i}\right) \exp \left[(-n+\beta) a_{i}\right]
\end{aligned}
$$

By Lemma 5.1 again,

$$
\begin{aligned}
w_{i}\left(a_{i}\right) \exp \left(\frac{(n-2)\left(a_{i}-\underline{s}_{i}\right)}{2}\right) & \leq w_{i}\left(\underline{s}_{i}\right) \\
& \leq c w_{i}\left(a_{i}\right) \exp \left(\frac{(n-2)\left(a_{i}-\underline{s}_{i}\right)}{2}\right)
\end{aligned}
$$

These estimates imply

$$
\begin{equation*}
\left|I_{1}\right| \leq c t_{i} \epsilon_{0}^{\frac{2 n}{n-2}} \exp \left(\beta a_{i}\right) \tag{5.31}
\end{equation*}
$$

Hence, we obtain

$$
\begin{equation*}
w_{i}\left(\underline{s}_{i}\right) \leq c t_{i}^{\frac{1}{2}} \exp \left(\frac{\beta a_{i}}{2}\right) \tag{5.32}
\end{equation*}
$$

Together with (5.22), it implies

$$
\begin{equation*}
\underline{s}_{i}-a_{i} \geq \frac{1}{n-2}\left(-\log t_{i}-\beta a_{i}\right)-c\left(\varepsilon_{0}\right) \tag{5.33}
\end{equation*}
$$

To obtain a lower bound for $w_{i}\left(\underline{s}_{i}\right)$, we recall $\hat{s}_{i}<a_{i}<s_{i}$ to be the next local maximum point of w_{i}. Set

$$
\begin{equation*}
\hat{u}_{i}(y)=\hat{M}_{i}^{-1} u_{i}\left(\hat{M}_{i}^{-\frac{2}{n-2}} y\right) \tag{5.34}
\end{equation*}
$$

where $\hat{M}_{i}=\exp \left(-\frac{n-2}{2} \hat{s}_{i}\right)$. By Lemma 5.2 , by passing to a subsequence, $\hat{u}_{i}(y)$ converges to $\hat{U}(y)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with

$$
\hat{U}(y)=\left(\frac{\hat{\lambda}}{\hat{\lambda}+|y-\hat{q}|^{2}}\right)^{\frac{n-2}{2}}
$$

Let $\hat{r}_{i}=\delta \exp \hat{s}_{i}$ for a small $\delta>0$. By (5.28) and (5.31),

$$
\begin{align*}
w_{i}^{2}\left(\underline{s}_{i}\right) \geq & \left|\int_{\hat{r}_{i} \leq|x| \leq e^{a_{i}}}\left\langle x, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \tag{5.35}\\
& -c\left\{t_{i} \int_{|x| \leq \hat{r}_{i}}|x|^{\beta} u_{i}^{\frac{2 n}{n-2}}(x) d x+t_{i} \int_{e^{a_{i}} \leq|x| \leq r_{i}}|x|^{\beta} u_{i}^{\frac{2 n}{n-2}}(x) d x\right\} \\
\geq & c_{n} t_{i}\left\{\left|\int_{\hat{r}_{i} \leq|x| \leq e^{a_{i}}}\langle x, \nabla \hat{K}\rangle \hat{u}_{i}^{\frac{2 n}{n-2}} d x\right|-\hat{r}_{i}^{\beta}-\varepsilon_{0}^{\frac{2 n}{n-2}} \exp \left(\beta a_{i}\right)\right\} .
\end{align*}
$$

Since $w_{i}\left(a_{i}\right)=\epsilon_{0}$, by the scaling property of $\hat{U}(y)$, we have

$$
\exp \left(a_{i}-\hat{s}_{i}\right) \sim \varepsilon_{0}^{-\frac{2}{n-2}} \gg 1 .
$$

By the scaling (5.34),

$$
\begin{align*}
& \left|\int_{\hat{r}_{i} \leq|x| \leq e^{a_{i}}}\left\langle x, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \\
& \quad=\beta t_{i} \hat{M}_{i}^{-\frac{2 \beta}{n-2}}\left|\int_{\delta \leq|y| \leq \exp \left(a_{i}-\hat{s}_{i}\right)} Q(y) \hat{u}_{i}(y)^{\frac{2 n}{n-2}} d y\right| \tag{5.36}\\
& \quad=\beta t_{i} \hat{M}_{i}^{-\frac{2 \beta}{n-2}}\left(\int_{\mathbb{R}^{n}}-Q(y) \hat{U}(y) d y\right)(1+o(1)),
\end{align*}
$$

where $o(1)$ is small provided that both δ and ϵ_{0} be small. Thus, by (5.20), (5.35) yields

$$
\begin{equation*}
w_{i}\left(\underline{s}_{i}\right) \geq c_{1} t_{i}^{1 / 2} \exp \left(\beta \hat{s}_{i} / 2\right) \geq c_{2}\left(\epsilon_{0}\right) t_{i}^{1 / 2} \exp \left(\beta a_{i} / 2\right) \tag{5.37}
\end{equation*}
$$

for some $c_{2}\left(\epsilon_{0}\right)>0$.
By (5.22),(5.32) and (5.37),

$$
\left\{\begin{array}{l}
2\left(\underline{s}_{i}-a_{i}\right) \leq b_{i}-a_{i} \tag{5.38}\\
\left|\underline{s}_{i}-\left(1-\frac{\beta}{n-2}\right) a_{i}+\frac{1}{n-2} \log t_{i}\right| \leq c\left(\epsilon_{0}\right) \\
\left|b_{i}-\left(1-\frac{2 \beta}{n-2}\right) a_{i}+\frac{2}{n-2} \log t_{i}\right| \leq c\left(\epsilon_{0}\right) .
\end{array}\right.
$$

for some constant $c\left(\epsilon_{0}\right)>0$. Hence we have

$$
\begin{align*}
a_{i} & \leq\left(1-\frac{2 \beta}{n-2}\right)^{-1}\left[s_{i}+\frac{2}{n-2} \log t_{i}\right]+c \tag{5.39}\\
& \leq \log \left[R_{i}^{-2} M_{i}^{-\frac{2}{n-2}}\right]+c,
\end{align*}
$$

and

$$
\begin{align*}
\underline{s}_{i} & \leq \frac{1}{2}\left(b_{i}-a_{i}\right)+a_{i}+c \\
& \leq \frac{\left(1-\frac{\beta}{n-2}\right)}{\left(1-\frac{2 \beta}{n-2}\right)} s_{i}+\frac{1}{(n-2)\left(1-\frac{2 \beta}{n-2}\right)} \log t_{i}+c \tag{5.40}\\
& \leq \log \left[R_{i}^{-1} M_{i}^{-\frac{2}{n-2}}\right]+c
\end{align*}
$$

where R_{i} is defined in (5.2). These estimates together with Lemma 5.1 and (5.22) imply

$$
\begin{align*}
w_{i}(s) & \leq w_{i}\left(\underline{s}_{i}\right) \exp \left[\frac{n-2}{2}\left(\underline{s}_{i}-s\right)\right] \\
& \leq c_{1} t_{i}^{\frac{1}{2}} \exp \left(-\frac{n-2}{2} s\right) \exp \left[\frac{n-2}{2} \underline{s}_{i}+\frac{1}{2} \beta a_{i}\right] \tag{5.41}\\
& \leq c\left(\epsilon_{0}\right) \exp \left(-\frac{n-2}{2} s\right) \exp \left\{\frac{\frac{n-2}{2} b_{i}+\log t_{i}}{1-\frac{2 \beta}{n-2}}\right\}
\end{align*}
$$

for $a_{i} \leq s \leq \underline{s}_{i}$, and

$$
\begin{align*}
w_{i}\left(\underline{s}_{i}\right) \exp \left[\frac{n-2}{2}\left(s-\underline{s}_{i}\right)\right] & \leq w_{i}(s) \tag{5.42}\\
& \leq w_{i}\left(\underline{s}_{i}\right) \exp \left[\frac{n-2}{2}\left(s-\underline{s}_{i}\right)\right]
\end{align*}
$$

for $\underline{s}_{i} \leq s \leq b_{i}$. Using (5.41), it follows

$$
\begin{align*}
u_{i}(x) & \leq c\left(\epsilon_{0}\right) \exp \left\{\frac{\frac{n-2}{2} s_{i}+\log t_{i}}{1-\frac{2 \beta}{n-2}}\right\}|x|^{-n+2} \tag{5.43}\\
& =c\left(\epsilon_{0}\right)\left(t_{i} M_{i}^{-1}\right)^{\frac{1}{1-\frac{2 \beta}{n-2}}|x|^{-n+2}}
\end{align*}
$$

for $\exp \left(a_{i}\right) \leq|x| \leq \exp \left(\underline{s}_{i}\right)$, and by Lemma 5.1,

$$
\begin{equation*}
c w_{i}\left(\underline{s}_{i}\right) \exp \left[-\frac{n-2}{2} \underline{s}_{i}\right] \leq u_{i}(x) \leq c_{1}\left(\epsilon_{0}\right) w_{i}\left(\underline{s}_{i}\right) \exp \left[-\frac{n-2}{2} \underline{s}_{i}\right] \tag{5.44}
\end{equation*}
$$

for $\exp \left(\underline{s}_{i}\right) \leq|x| \leq \exp \left(s_{i}\right)$ and some $c_{1}\left(\epsilon_{0}\right)$. Since $u_{i}(x) \sim \exp \left(-\frac{n-2}{2} s_{i}\right)$ for $|x|=\exp \left(s_{i}\right),(5.44)$ leads to

$$
\begin{equation*}
u_{i}(x) \sim \exp \left(-\frac{n-2}{2} s_{i}\right) \sim M_{i} \tag{5.45}
\end{equation*}
$$

for $\exp \left(\underline{s}_{i}\right) \leq|x| \leq M_{i}^{-\frac{2}{n-2}}$. Now (5.39), (5.40), (5.44) and (5.45) imply

$$
\begin{equation*}
u_{i}(x) \leq c\left(t_{i} M_{i}^{-1}\right)^{\frac{1}{1-\frac{2 \beta}{n-2}}}|x|^{-n+2} \tag{5.46}
\end{equation*}
$$

for $R_{i}^{-2} M_{i}^{-\frac{2}{n-2}} \leq|x| \leq R_{i}^{-1} M_{i}^{-\frac{2}{n-2}}$, and

$$
\begin{equation*}
u_{i}(x) \leq c M_{i} \tag{5.47}
\end{equation*}
$$

for $R_{i}^{-1} M_{i}^{-\frac{2}{n-2}} \leq|x| \leq M_{i}^{-\frac{2}{n-2}} \sim e^{s_{i}}$.
Finally, we want to estimate $u_{i}(x)$ for $|x| \geq M_{i}^{\frac{-2}{n-2}}$. Set s_{i}^{*} to be a local minimum point of $w_{i}(s)$ in $\left(s_{i}, 0\right)$ if there is one. Otherwise $s_{i}^{*}=0$. we claim

$$
s_{i}^{*} \rightarrow 0 \text { if and only if } L_{i} M_{i}^{-\frac{2}{n-2}} \rightarrow 0 \text { and } i \rightarrow+\infty
$$

$$
\begin{equation*}
\text { Moreover, if } s_{i}^{*} \rightarrow 0, \text { then } e^{s_{i}^{*}} \sim L_{i} M_{i}^{\frac{-2}{n-2}} \tag{5.48}
\end{equation*}
$$

First suppose $L_{i} M_{i}^{\frac{-2}{n-2}} \rightarrow 0$ and $s_{i}^{*} \geq c>0$. Set

$$
\widetilde{u}_{i}(y)=M_{i}^{-1} u_{i}\left(M_{i}^{-\frac{2}{n-2}} y\right) .
$$

By Lemma 5.1,

$$
\begin{equation*}
\widetilde{u}_{i}(y) \leq c|y|^{2-n} \text { for } 1 \leq|y| \leq M_{i}^{\frac{2}{n-2}}, \tag{5.49}
\end{equation*}
$$

because $s_{i}^{*} \geq c>0$. The scaled $\widetilde{u}_{i}(y)$ converges to

$$
U(y)=\left[\lambda\left(\lambda^{2}+|y-q|^{2}\right)\right]^{\frac{2-n}{2}}
$$

for $\lambda>0$ and $q \in \mathbb{R}^{n}$. Then by Remark 5.3 (below), we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q(y) U^{\frac{2 n}{n-2}}(y) d y=0 \tag{5.50}
\end{equation*}
$$

Note \widetilde{u}_{i} satisfies $\Delta \widetilde{u}_{i}+\widetilde{K}_{i}(y) \widetilde{u}_{i}^{\frac{n+2}{n-2}}=0$ and

$$
\widetilde{K}_{i}(y)=K_{i}\left(M_{i}^{-\frac{2}{n-2}} y\right) .
$$

Clearly,

$$
y \cdot \nabla \widetilde{K}_{i}(y)=t_{i} M_{i}^{-\frac{2 \beta}{n-2}}\left[Q(y)+O\left(|y|^{\beta-1}\right)\right]
$$

and $L_{i}^{n-2}=t_{i}^{-1} M_{i}^{\frac{2 \beta}{n-2}}$. Thus, the Pohozave identity yields

$$
\begin{align*}
& \frac{(n-2) \beta}{2 n} \int_{\mathbb{R}^{n}} Q(y) U^{\frac{2 n}{n-2}}(y) d y \\
& \quad=\lim _{i \rightarrow+\infty} \frac{n-2}{2 n} L_{i}^{n-2} \int_{|y| \leq M_{i}^{\frac{2}{n-2}}}\left\langle y, \nabla \widetilde{K}_{i}\right) \widetilde{u}_{i}^{\frac{2 n}{n-2}}(y) d y \\
& \quad=\lim _{i \rightarrow+\infty} L_{i}^{n-2} \int_{|y|=M_{i}^{n-2}} \frac{2}{}\left(\frac{n-2}{2} \widetilde{u}_{i} \frac{\partial \widetilde{u}_{i}}{\partial r}+\left|\frac{\partial \widetilde{u}_{i}}{\partial r}\right|^{2} r\right. \tag{5.51}\\
& \left.\quad-\frac{1}{2}\left|\nabla \widetilde{u}_{i}\right|^{2} r+\frac{n-2}{2 n} \widetilde{K}_{i}(y) \widetilde{u}_{i}^{\frac{2 n}{n-2}} r\right) d \sigma \rightarrow 0,
\end{align*}
$$

because the boundary term $=O\left(M_{i}^{-2}\right)$. By (5.50) and (K2),

$$
\int Q(y) U^{\frac{2}{n-2}}(y) d y \neq 0
$$

Thus, (5.51) yields a contradiction.
Conversely, we assume $s_{i}^{*} \rightarrow 0$. Then as the second inequality in (5.38), we have

$$
\begin{equation*}
s_{i}^{*}=\left(1-\frac{\beta}{n-2}\right) s_{i}-\frac{1}{n-2} \log t_{i}+O(1) \tag{5.52}
\end{equation*}
$$

which yields

$$
\begin{equation*}
e^{s_{i}^{*}} \sim L_{i} M_{i}^{-\frac{2}{n-2}} \tag{5.53}
\end{equation*}
$$

and it implies $L_{i} M_{i}^{-\frac{2}{n-2}} \rightarrow 0$ as $i \rightarrow+\infty$. Hence, (5.48) is proved. Clearly, (5.13) and (5.14) follows from Lemma 5.1 and (5.48). Therefore, we have proved Step 1.

Step 2. Recall that $\widetilde{u}_{i}(x)=M_{i}^{-1} u_{i}\left(M_{i}^{-\frac{2}{n-2}} x\right)$. After passing to a subsequence, $\widetilde{u}_{i}(x)$ converges to $U(x-q)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with

$$
\begin{equation*}
U(x)=\left(\frac{\lambda}{\lambda^{2}+|x|^{2}}\right)^{\frac{n-2}{2}} \tag{5.54}
\end{equation*}
$$

Now we can estimate the difference of \widetilde{u}_{i} and $U(x-q)$ more precisely if we rescale $U(x-q)$ and translate the position of its maximum point suitably.

If $q \neq 0$, then there is a local maximum point q_{i} of \widetilde{u}_{i} with $\lim _{i \rightarrow \infty} q_{i}$ $=q$. For suitable $a_{i} \rightarrow 1$ and $\lambda_{i} \rightarrow 1$, we let the function $U_{i}(x)=$ $a_{i} \lambda_{i}^{-\frac{n-2}{2}} U\left(\lambda_{i}^{-1}\left(x-q_{i}\right)\right)>0$ satisfy

$$
\left\{\begin{array}{l}
\Delta U_{i}+\widetilde{K}_{i}(0) U_{i}^{\frac{n+2}{n-2}}=0 \quad \text { in } \mathbb{R}^{n} \tag{5.55}\\
U_{i}\left(q_{i}\right)=\max _{\mathbb{R}^{n}} U_{i}=\widetilde{u}_{i}\left(q_{i}\right)
\end{array}\right.
$$

with $\widetilde{K}_{i}(x)=K_{i}\left(M_{i}^{-\frac{2}{n-2}} x\right)$, and

$$
\begin{equation*}
\nabla\left(\widetilde{u}_{i}\left(q_{i}\right)-U_{i}\left(q_{i}\right)\right)=0 . \tag{5.56}
\end{equation*}
$$

Note that λ_{i} and a_{i} are uniquely determined because they satisfy

$$
\left\{\begin{array}{l}
a_{i} \lambda_{i}^{-\frac{n-2}{2}} U(0)=\widetilde{u}_{i}\left(q_{i}\right) \text { and } \tag{5.57}\\
\widetilde{K}_{i}(0)=a_{i}^{-\frac{4}{n-2}} n(n-2)
\end{array}\right.
$$

If $q=0$, let $\delta_{o}>0$ be a small number which is independent of i and will be chosen later. Then there is $q_{i}=q_{i}\left(\delta_{0}\right)$ such that

$$
\begin{gather*}
\lim _{i \rightarrow \infty} q_{i}=0, \text { and } \\
\int_{\left|x-q_{i}\right|=\delta_{o}}\left(x-q_{i}\right) \widetilde{u}_{i} d s=0, \tag{5.58}
\end{gather*}
$$

since $\widetilde{u}_{i}(x)$ converges to $U(x)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. For suitable $a_{i} \rightarrow 1$ and $\lambda_{i} \rightarrow \lambda$, we may let the function $U_{i}=a_{i} \lambda_{i}^{-\frac{n-2}{2}} U_{1}\left(\lambda_{i}^{-1}\left(x-q_{i}\right)\right)>0$ satisfy

$$
\left\{\begin{array}{l}
\triangle U_{i}+\widetilde{K}_{i}(0) U_{i}^{\frac{n+2}{n-2}}=0 \quad \text { in } \mathbb{R}^{n} \tag{5.59}\\
\int_{\left|x-q_{i}\right|=\delta_{o}} U_{i} d s=\int_{\left|x-q_{i}\right|=\delta_{o}} \widetilde{u}_{i} d s \\
\int_{\left|x-q_{i}\right|=\delta_{o}}\left(x-q_{i}\right) U_{i} d s=0
\end{array}\right.
$$

Set U_{i} as above, let $g_{i}(x)=\widetilde{u}_{i}(x)-U_{i}(x)$. Then g_{i} satisfies

$$
\triangle g_{i}+b(x) g_{i}=\widetilde{Q}(x) U_{i}^{\frac{n+2}{n-2}}
$$

where

$$
\begin{aligned}
b(x) & =\widetilde{K}_{i}(x) \frac{\widetilde{u}_{i}^{\frac{n+2}{n-2}}-U_{i}^{\frac{n+2}{n-2}}}{\widetilde{\widetilde{u}}_{i}-U_{i}}, \\
\widetilde{Q}(x) & =\widetilde{K}_{i}(0)-\widetilde{K}_{i}(x) .
\end{aligned}
$$

Let $f_{i}(x)$ be defined as follows.

$$
\begin{aligned}
& f_{i}(x)=|x|^{-\frac{n-2}{2}} \quad \text { for } 0 \leq|x| \leq R_{i}^{-2}, \\
& f_{i}(x)=\left\{L_{i}^{-n+2}+R_{i}^{-n+2}|x|^{-n+2}+\max _{\substack{-M_{i}}}\left|\widetilde{u}_{i}(y)-U_{i}(y)\right|\right\} \\
& \text { for } R_{i}^{-2} \leq|x| \leq M_{i}^{\frac{2}{n-2}},
\end{aligned}
$$

and

$$
N_{i}=\max _{|x| \leq M_{i}^{\frac{2}{n-2}}} f_{i}^{-1}(x)\left|g_{i}(x)\right| .
$$

Let x_{i} be a point satisfy $\left|x_{i}\right| \leq M_{i}^{\frac{2}{n-2}}$ and satisfy $N_{i}=f_{i}^{-1}\left(x_{i}\right)\left|g_{i}\left(x_{i}\right)\right|$. To prove part (ii), it suffices to show $\sup _{i \geq 1} N_{i}<\infty$.

Assume that N_{i} is unbounded. Without loss of generality, we may assume $\lim _{i \rightarrow \infty} N_{i}=+\infty$. Let $r_{i}=\min \left(L_{i}, M_{i}^{\frac{2}{n-2}}\right)$. By (5.1), (5.11), (5.12), (5.13) and (5.14), we can see that \widetilde{u}_{i} satisfies

$$
\begin{align*}
& \widetilde{u}_{i}(x) \leq c|x|^{-\frac{n-2}{2}} \text { for }|x| \leq M_{i}^{\frac{2}{n-2}}, \tag{5.60}\\
& \begin{aligned}
\widetilde{u}_{i}(x) & \leq c\left(t_{i} M_{i}^{-1}\right)^{\gamma} M_{i}|x|^{-n+2} \\
& =c R_{i}^{-n+2}|x|^{-n+2} \text { for } R_{i}^{-2} \leq|x| \leq R_{i}^{-1}, \\
\widetilde{u}_{i}(x) & \leq c U(x), \text { for } R_{i}^{-1} \leq|x| \leq r_{i}, \text { and }
\end{aligned}
\end{align*}
$$

If $L_{i} M_{i}^{-\frac{2}{n-2}}$ is bounded, then $\widetilde{u}_{i}(x) \leq c L_{i}^{-n+2}$ for $r_{i} \leq|x| \leq M_{i}^{\frac{2}{n-2}}$.
We note that if $L_{i} M_{i}^{-\frac{2}{n-2}}$ is unbounded, then $w_{i}(s)$ has no local minimum for $s_{i} \leq s \leq 0$. Thus, $r_{i}=M_{i}^{\frac{2}{n-2}}$ and by (5.13), we have for $|x|=r_{i}$,

$$
\begin{equation*}
\widetilde{u}_{i}(x) \sim M_{i}^{-2} \gg L_{i}^{-n+2}, \tag{5.64}
\end{equation*}
$$

i.e., (5.63) does not hold in this case.

Since N_{i} is unbounded, we have by (5.60), (5.61) and (5.63),

$$
\begin{equation*}
r_{i} \geq\left|x_{i}\right| \geq R_{i}^{-1} . \tag{5.65}
\end{equation*}
$$

By Green's identity, we have for $r_{i} \geq|x| \geq R_{i}^{-1}$

$$
\begin{align*}
g_{i}(x)= & \int_{|\eta| \leq r_{i}} G(x, \eta)\left(b(\eta) g_{i}-\widetilde{Q}(\eta) U_{i}^{\frac{n+2}{n-2}}\right) d \eta \\
& -\int_{|\eta|=r_{i}} \frac{\partial G(x, \eta)}{\partial \nu} g_{i}(\eta) d s \tag{5.66}
\end{align*}
$$

and

$$
\begin{align*}
\nabla g_{i}(x)= & \int_{|\eta| \leq r_{i}} \nabla_{x} G(x, \eta)\left(b(\eta) g_{i}-\widetilde{Q}(\eta) U_{i}^{\frac{n+2}{n-2}}\right) d \eta \\
& -\int_{|\eta|=r_{i}} \frac{\partial \nabla_{x} G(x, \eta)}{\partial \nu} g_{i}(\eta) d s \tag{5.67}
\end{align*}
$$

where $G(x, \eta)$ is the Green function of $-\triangle$ on $\left\{x:|x| \leq r_{i}\right\}$. Since we assume $\frac{n-2}{2} \geq \beta>1$, it implies $n \geq 4$. By the inequality $g_{i} \leq N_{i} f_{i}$ and $G(x, \eta) \leq c_{n}|x-\eta|^{2-n}$, we have the following estimates for $R_{i}^{-1} \leq$ $|x| \leq r_{i}$. Their proofs are elementary and are omitted here. By (5.60), we have

$$
\left|b(\eta) g_{i}(\eta)\right| \leq c|\eta|^{-\frac{n+2}{2}} \text { for }|\eta| \leq R_{i}^{-2} .
$$

Hence

$$
\begin{equation*}
\int_{|\eta| \leq R_{i}^{-1}} G(x, \eta) b(\eta) g_{i} d \eta=O\left(R_{i}^{-n+2}|x|^{-n+2}\right) . \tag{5.68}
\end{equation*}
$$

By (5.62) and (5.63), we have

$$
\widetilde{u}_{i}(x) \leq c U(x) \text { for } R_{i}^{-1} \leq|x| \leq r_{i},
$$

which implies

$$
|b(\eta)| \leq c(1+|\eta|)^{-4} \text { for } R_{i}^{-1} \leq|\eta| \leq r_{i} .
$$

Hence

$$
\begin{align*}
& \int_{R_{i}^{-1} \leq|\eta| \leq r_{i}} G(x, \eta) b(\eta) g_{i} d \eta \tag{5.69}\\
&= O\left[\int_{R_{i}^{-1} \leq|\eta| \leq r_{i}} G(x, \eta) U_{i}^{\frac{4}{n-2}} N_{i} f_{i} d \eta\right] \\
&= N_{i} O\left[R _ { i } ^ { - n + 2 } \left\{\begin{array}{cc}
|x|^{-n+4}(1+|x|)^{-2} & n>4 \\
\log \left(2+|x|^{-1}\right)(1+|x|)^{-2} & n=4
\end{array}\right.\right. \\
&\left.\quad+(1+|x|)^{-2}\left(L_{i}^{-n+2}+\max ^{\frac{2}{2}}\left|g_{i}(\eta)\right|\right)\right] \\
&= O(1)(1+|x|)^{-2} N_{i} f_{i}(x)
\end{align*}
$$

Note that for (5.69), we have used $R_{i}^{-n+2}|x|^{-n+2}=o(1) L_{i}^{-n+2}$ for $|x| \geq 1$,

$$
\begin{align*}
\int_{|\eta| \leq} & G(x, \eta) \widetilde{Q}(\eta) U_{i}^{\frac{n+2}{n-2}} d \eta \\
& =O\left[\frac{1}{(1+|x|)^{n-2}}+\frac{1}{(1+|x|)^{n-\beta}}\right] L_{i}^{-n+2} \tag{5.70}\\
= & o(1) N_{i} f_{i}(x)
\end{align*}
$$

where

$$
\begin{align*}
&|\widetilde{Q}(\eta)|=\left|K_{i}(0)-K_{i}\left(M_{i}^{-\frac{2}{n-2}} \eta\right)\right| \\
& \leq c t_{i} M_{i}^{-\frac{2 \beta}{n-2}}|\eta|^{\beta} \\
&=c L_{i}^{-n+2}|\eta|^{\beta} \\
& \int_{|\eta|=r_{i}} \frac{\partial G(x, \eta)}{\partial \nu} g_{i}(\eta) d s=O\left[\max _{|\eta|=r_{i}}\left|g_{i}(\eta)\right|\right] \tag{5.71}
\end{align*}
$$

From (5.62) and (5.63), there is $\hat{c}>0$ such that

$$
\max _{|\eta|=r_{i}}\left|g_{i}(\eta)\right| \leq \hat{c} \min _{|x| \leq M_{i}^{\frac{2}{n-2}}} f_{i}(x)
$$

Putting these estimates together, we obtain

$$
\begin{align*}
g_{i}(x) & =O\left[(1+|x|)^{-2} N_{i} f_{i}(x)+\max _{|\eta|=r_{i}}\left|g_{i}(\eta)\right|\right] \tag{5.72}\\
& =O\left[(1+|x|)^{-2}+o(1)\right] N_{i} f_{i}(x)
\end{align*}
$$

for $r_{i} \geq|x| \geq R_{i}^{-1}$. Similarly, we have the following estimates for derivatives:

$$
\begin{equation*}
\int_{|\eta| \leq R_{i}^{-1}} \nabla_{x} G(x, \eta) b(\eta) g_{i} d \eta=O\left(R_{i}^{-n+2}|x|^{-n+1}\right), \tag{5.73}
\end{equation*}
$$

$$
\begin{align*}
& \int_{R_{i}^{-1} \leq|\eta| \leq r_{i}} \nabla_{x} G(x, \eta) b(\eta) g_{i} d \eta \tag{5.74}\\
& =O\left[\int_{R_{i}^{-1} \leq|\eta| \leq r_{i}} \nabla_{x} G(x, \eta) U_{i}^{\frac{4}{n-2}} N_{i} f_{i} d \eta\right] \\
& =N_{i} O\left[R_{i}^{-n+2}|x|^{-n+3}(1+|x|)^{-2}\right. \\
& \left.+(1+|x|)^{-3}\left(L_{i}^{-n+2}+\max _{|\eta|=M_{i}^{n-2}}\left|g_{i}(\eta)\right|\right)\right] \\
& =O(1)(1+|x|)^{-2} N_{i} f_{i}(x), \\
& \int_{|\eta| \leq r_{i}} \nabla_{x} G(x, \eta) \widetilde{Q}(\eta) U_{i}^{\frac{n+2}{n-2}} d \eta \\
& =O(1)\left[\log (2+|x|)(1+|x|)^{-n+1}\right. \tag{5.75}\\
& \left.+(1+|x|)^{-n-1+\beta}\right] L_{i}^{-n+2},
\end{align*}
$$

$$
\begin{equation*}
\int_{|\eta|=r_{i}} \frac{\partial \nabla_{x} G(x, \eta)}{\partial \nu} g_{i}(\eta) d s=O\left[r_{i}^{-1} \max _{|\eta|=r_{i}}\left|g_{i}(\eta)\right|\right] \tag{5.76}
\end{equation*}
$$

for $r_{i} \geq|x| \geq R_{i}^{-1}$. It follows from these estimates

$$
\begin{align*}
\nabla g_{i}(x)=O\left[R_{i}^{-n+2}|x|^{-n+1}+\right. & (1+|x|)^{-2} N_{i} f_{i}(x) \\
& \left.+r_{i}^{-1} \max _{|\eta|=r_{i}}\left|g_{i}(\eta)\right|\right] \tag{5.77}\\
=O\left[R_{i}^{-n+2}|x|^{-n+1}+\right. & \left.\left((1+|x|)^{-2}+o(1)\right) N_{i} f_{i}(x)\right]
\end{align*}
$$

for $r_{i} \geq|x| \geq R_{i}^{-1}$.
Let $x=x_{i}$ in (5.72). We obtain

$$
N_{i} f_{i}\left(x_{i}\right)=\left|g_{i}\left(x_{i}\right)\right| \leq c\left[\left(1+\left|x_{i}\right|\right)^{-2}+o(1)\right] N_{i} f_{i}\left(x_{i}\right)
$$

for some c independent of i. Hence x_{i} must be bounded and

$$
\left|x_{i}\right| \leq c_{1}
$$

for some c_{1} independent of i.
Since $R_{i}^{-1} \leq\left|x_{i}\right| \leq c_{1}$, we have

$$
f_{i}\left(x_{i}\right)=\left\{L_{i}^{-n+2}+R_{i}^{-n+2}\left|x_{i}\right|^{-n+2}+\max _{|y|=M_{i}^{\frac{2}{n-2}}}\left|\widetilde{u}_{i}(y)-U_{i}(y)\right|\right\} .
$$

Note that $L_{i} \ll R_{i}$. For any $r>0$, if $|x| \geq r$, then

$$
\begin{equation*}
\frac{f_{i}(x)}{f_{i}\left(x_{i}\right)} \leq 2+\left(\frac{L_{i}}{R_{i}}\right)^{n-2} r^{-n+2} \tag{5.78}
\end{equation*}
$$

By (5.72) and (5.78), $\left|g_{i}\left(x_{i}\right)\right|^{-1} g_{i}(x)$ satisfies for $|x| \geq r>0$,

$$
\begin{aligned}
\frac{\left|g_{i}(x)\right|}{\left|g_{i}\left(x_{i}\right)\right|} & \leq c(1+|x|)^{-2} \frac{f_{i}(x)}{f_{i}\left(x_{i}\right)} \\
& \leq c \quad\left[(1+|x|)^{-2}+\left(\frac{L_{i}}{R_{i}}\right)^{n-2} r^{-n+2}\right] .
\end{aligned}
$$

After passing to a subsequence, the sequence $g_{i}\left(x_{i}\right)^{-1} g_{i}(x)$ converges in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ to a function ϕ which satisfies

$$
\left\{\begin{array}{c}
\triangle \phi+n(n+2) U^{\frac{4}{n-2}} \phi=0 \text { in } \mathbb{R}^{n} \backslash\{0\} \tag{5.79}\\
|\phi| \leq c(1+|x|)^{-2}
\end{array}\right.
$$

where U is given in (5.54). Since $\phi(x)$ is bounded, by the regularity of elliptic equations, ϕ satisfies (5.79) in \mathbb{R}^{n}. Now we show that $\phi \not \equiv 0$. Since x_{i} is bounded, without loss of generality, we may assume $x_{i} \rightarrow x_{0}$. If $x_{0} \neq 0$, then $\phi\left(x_{0}\right)=1$. Obviously, $\phi(x) \not \equiv 0$ in \mathbb{R}^{n}. Now we assume $x_{0}=0$. Let δ_{1} be a small positive number. For $y_{i}=\delta_{1}\left|x_{i}\right|^{-1} x_{i}$, we have by (5.77) and the fact $\left|x_{i}\right|>R_{i}^{-1}$ that

$$
\begin{aligned}
\left|g_{i}\left(y_{i}\right)-g_{i}\left(x_{i}\right)\right| & \leq \int_{\left|x_{i}\right|}^{\left|y_{i}\right|}\left|\nabla g_{i}\left(s\left|x_{i}\right|^{-1} x_{i}\right)\right| d s \\
& \leq c\left(R_{i}^{-n+2}\left|x_{i}\right|^{-n+2}+\delta_{1} N_{i} f_{i}\left(x_{i}\right)\right) \\
& \leq \frac{1}{2} N_{i} f_{i}\left(x_{i}\right) \leq \frac{1}{2}\left|g_{i}\left(x_{i}\right)\right|
\end{aligned}
$$

if N_{i} is large and δ_{1} is small. This implies

$$
\left|g_{i}\left(x_{i}\right)^{-1} g\left(y_{i}\right)\right| \geq \frac{1}{2}
$$

for large i and consequently,

$$
\min _{|x|=\delta_{1}}|\phi(x)| \geq \frac{1}{2}
$$

We conclude that $\phi \not \equiv 0$.
By Lemma 3.2,

$$
\phi=\sum \gamma_{j} \psi_{j}
$$

with $\psi_{0}=\frac{n-2}{2} U+(x-q) \cdot \nabla U(x-q)$ and $\psi_{j}=\frac{\partial U}{\partial x_{j}}, 1 \leq j \leq n$. By (5.56) and (5.59), we have either $q \neq 0, \phi(q)=0$ and $\nabla \phi(q)=0$ or $q=0, \int_{|x|=\delta_{o}} \phi d s=0$ and $\int_{|x|=\delta_{0}} x_{j} \phi d s=0,1 \leq j \leq n$, which implies $\gamma_{j}=0$ for $0 \leq j \leq n$. We obtain a contradiction. Hence N_{i} must be bounded. The proof of Theorem 2.7 is complete. q.e.d.

Proof of Lemma 5.2. We follow the notations in the proof of Theorem 2.7. Recall that $\hat{u}_{i}(y)$ converges to $\hat{U}(y)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$, where \hat{U} satisfies (5.16). By the Pohozaev identity

$$
\begin{equation*}
\frac{n-2}{2 n} \int_{|x| \leq 1}\left\langle x, \nabla \hat{K}_{i}\right\rangle \hat{u}_{i}^{\frac{2 n}{n-2}} d x=P\left(1, \hat{u}_{i}\right), \tag{5.80}
\end{equation*}
$$

where

$$
\hat{K}_{i}(x)=K_{i}\left(\hat{M}_{i}^{-\frac{2}{n-2}} x\right), \hat{M}_{i}=e^{-\frac{n-2}{2} \hat{s}_{i}}
$$

and

$$
\begin{aligned}
& P\left(r, \hat{u}_{i}\right)=\int_{|x|=r}\left(\frac{n-2}{2} \hat{u}_{i} \frac{\partial \hat{u}_{i}}{\partial \nu}-\frac{1}{2} r\left|\nabla \hat{u}_{i}\right|^{2}\right. \\
& \left.\quad+r\left|\frac{\partial \hat{u}_{i}}{\partial \nu}\right|^{2}+\frac{n-2}{2 n} r \hat{K}_{i} \hat{u}_{i}^{\frac{2 n}{n-2}}\right) d \sigma .
\end{aligned}
$$

Since $\hat{u}_{i}(x) \leq c|x|^{-\frac{n-2}{2}}$, the left hand side of (5.80) tends to 0 as $i \rightarrow \infty$, which implies

$$
P(1, U)=\lim _{i \rightarrow \infty} P\left(1, \widetilde{u}_{i}\right)=0 .
$$

Since $P(r, u) \equiv$ constant <0 for any singular solution u of (5.16), \hat{U} is smooth at 0 . Hence

$$
\hat{U}(y)=\left(\frac{\hat{\lambda}}{\hat{\lambda}+|y-\hat{q}|^{2}}\right)^{\frac{n-2}{2}}
$$

Since

$$
\left.\frac{d}{d r} \hat{u}_{i}(r) r^{\frac{n-2}{2}}\right|_{r=1}=0
$$

we have

$$
\left.\frac{d}{d r} \overline{\hat{U}}(r) r^{\frac{n-2}{2}}\right|_{r=1}=0
$$

By a straightforward computation, we have

$$
\begin{aligned}
\frac{d}{d r} \overline{\hat{U}}(r) r^{\frac{n-2}{2}} & =\frac{d}{d r} \frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1}} \frac{(r \hat{\lambda})^{\frac{n-2}{2}} d \sigma}{\left(\hat{\lambda}^{2}+|r y-\hat{q}|^{2}\right)^{\frac{n-2}{2}}} \\
& =\frac{(n-2) \hat{\lambda}^{\frac{n-2}{2}} r^{\frac{n-4}{2}}}{2\left|S^{n-1}\right|} \int_{S^{n-1}} \frac{\left(\hat{\lambda}^{2}+|\hat{q}|^{2}-r^{2}\right) d \sigma}{\left(\hat{\lambda}^{2}+|r y-\hat{q}|^{2}\right)^{\frac{n}{2}}}
\end{aligned}
$$

Thus, $r_{0}=\sqrt{\hat{\lambda}^{2}+|\hat{q}|^{2}}$ is the only critical point of $\overline{\hat{U}}(r) r^{\frac{n-2}{2}}$ and

$$
\left.\frac{d^{2}}{d r^{2}}\left(\overline{\hat{U}}(r) r^{\frac{n-2}{2}}\right)\right|_{r_{0}}<0
$$

(5.18) follows readily.

We want to prove that $\hat{U}(y)$ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q(y) \hat{U}(y)^{\frac{2 n}{n-2}} d y=0 \tag{5.81}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} Q(y) \hat{U}(y)^{\frac{2 n}{n-2}} d y \leq 0 \tag{5.82}
\end{equation*}
$$

By a simple scaling argument, we have (5.22), i.e.,

$$
a_{i}-\hat{s}_{i} \leq c\left(\varepsilon_{0}\right)
$$

Hence, by (5.33),

$$
\begin{equation*}
\underline{s}_{i}-\hat{s}_{i}>\underline{s}_{i}-a_{i} \geq \frac{1}{n-2}\left(-\log t_{i}-\beta \hat{s}_{i}\right)-c . \tag{5.83}
\end{equation*}
$$

Recall that

$$
\hat{M}_{i}=\exp \left(-\frac{n-2}{2} \hat{s}_{i}\right) \text { and } \hat{L}_{i}=\left(t_{i}^{-1} \hat{M}_{i}^{\frac{2 \beta}{n-2}}\right)^{\frac{1}{n-2}}
$$

By (5.83),

$$
r_{i} \equiv e^{s_{i}} \hat{M}_{i}^{\frac{2}{n-2}} \geq c\left(t_{i}^{-1} \hat{M}_{i}^{\frac{2 \beta}{n-2}}\right)^{\frac{1}{n-2}}=c \hat{L}_{i}^{n-2}
$$

Applying Lemma 5.1, we have

$$
\begin{equation*}
\hat{u}_{i}(y) \leq c|y|^{2-n} \tag{5.84}
\end{equation*}
$$

for $1 \leq|y| \leq e^{\underline{s}_{i}} \hat{M}_{i}^{\frac{2}{n-2}}=r_{i}$. Since \hat{u}_{i} satisfies

$$
\Delta \hat{u}_{i}+\hat{K}_{i} \hat{u}_{i}^{\frac{n+2}{n-2}}=0 \text { for }|y| \leq \hat{M}_{i}^{\frac{2}{n-2}}
$$

where

$$
\hat{K}_{i}(y)=K_{i}\left(\hat{M}_{i}^{-\frac{2}{n-2}} y\right)
$$

Let $e_{j}, 1 \leq j \leq n$, be the standard orthorgonal base for \mathbb{R}^{n}. Applying Pohozaev's identities, we have

$$
\begin{align*}
\frac{n-2}{2 n} & \int_{B\left(0, r_{i}\right)}\left\langle e_{j}, \nabla \hat{K}_{i}\right\rangle \hat{u}_{i}^{\frac{2 n}{n-2}}(y) d y \\
= & \int_{\partial B\left(0, r_{i}\right)}\left\langle e_{j}, \nabla \hat{u}_{i}\right\rangle \frac{\partial \hat{u}_{i}}{\partial \nu}-\left\langle e_{j}, \nu\right\rangle \frac{\left|\nabla \hat{u}_{i}\right|^{2}}{2} \tag{5.85}\\
& +\frac{n-2}{2 n}\left\langle e_{j}, \nu\right\rangle \hat{K}_{i} \hat{u}_{i}^{\frac{2 n}{n-2}} d \sigma \\
= & O\left(r_{i}^{-n+1}\right)
\end{align*}
$$

by (5.85) and the gradient estimate. From (5.28), we have

$$
\begin{align*}
& \frac{n-2}{2 n} \int_{B\left(0, r_{i}\right)}\left\langle y, \nabla \hat{K}_{i}\right\rangle \hat{u}_{i}^{\frac{2 n}{n-2}}(y) d y \tag{5.86}\\
& \quad=-\frac{\left|S^{n-1}\right|}{2} w_{i}^{2}\left(\underline{s}_{i}\right)(1+o(1))
\end{align*}
$$

Since $t_{i} \hat{M}_{i}^{-\frac{2 \beta}{n-2}}=\hat{L}_{i}^{-n+2}$ and

$$
\nabla \hat{K}_{i}(y)=t_{i} \hat{M}_{i}^{-\frac{2 \beta}{n-2}}\left(\nabla Q(y)+o(1)|y|^{\beta-1}\right) \text { for }|y| \leq \hat{M}_{i}^{\frac{2}{n-2}}
$$

(5.84) and (5.85) yield

$$
\begin{aligned}
\lim _{i \rightarrow+\infty} \left\lvert\, \hat{L}_{i}^{n-2} \int_{B\left(0, r_{i}\right)} t_{i} \hat{M}_{i}^{-\frac{2 \beta}{n-2}}(\right. & \left.\left(\frac{\partial Q(y)}{\partial y_{j}}\right)+o(1)|y|^{\beta-1}\right) \left.\hat{u}_{j}^{\frac{2 n}{n-2}}(y) d y \right\rvert\, \\
& =\left|\int_{\mathbb{R}^{n}} \frac{\partial Q}{\partial y_{j}} \hat{U}^{\frac{2 n}{n-2}}(y) d y\right| \leq c \hat{L}_{i}^{-1} \rightarrow 0
\end{aligned}
$$

as $i \rightarrow+\infty$, which is (5.81).
To prove (5.82), we note

$$
\left(y, \nabla \hat{K}_{i}(y)\right)=t_{i} \hat{M}_{i}^{-\frac{2 \beta}{n-2}}\left(\beta Q(y)+o(1)|y|^{\beta}\right) .
$$

Thus, (5.86) yields

$$
\begin{aligned}
\beta \int_{\mathbb{R}^{n}} Q(y) \hat{U}^{\frac{2 n}{n-2}}(y) d y & =\lim _{i \rightarrow+\infty}\left(\hat{L}_{i}^{n-2} \int_{B\left(0, r_{i}\right)}\left(y, \nabla \hat{K}_{i}\right) \hat{u}_{i}^{\frac{2 n}{n-2}}(y) d y\right) \\
& =-\frac{n(n-2)\left|S^{n-1}\right|}{4} \lim _{i \rightarrow+\infty}\left(\hat{L}_{i}^{n-2} w_{i}^{2}\left(\underline{s}_{i}\right)\right) \\
& \leq 0,
\end{aligned}
$$

which is (5.82). The proof of Lemma 5.2 is complete. q.e.d.
Remark 5.3. The proof of (5.19) holds also for \widetilde{u}_{i} of (5.49), when $L_{i} M_{i}^{-\frac{2}{n-2}} \rightarrow 0$. Because the left hand side of $(5.85)=\frac{n-2}{2 n} t_{i} M_{i}^{-\frac{2 \beta}{n-2} \times}$

$$
\left(\int_{\delta \leq|y| \leq M_{i}^{\frac{2}{n-2}}}\left\langle e_{j}, \nabla Q(y)\right\rangle U^{\frac{2 n}{n-2}}(y) d y+O(1) \int_{|y| \leq \delta}|y|^{\beta-1-n} d y\right),
$$

(5.85) yields

$$
\left|\int_{\mathbb{R}^{n}} \nabla Q(y) U^{\frac{2 n}{n-2}}(y) d y\right| \leq c L_{i}^{n-2}\left(M_{i}^{-\frac{2}{n-2}}\right)^{(n-1)} \rightarrow 0
$$

as $n \rightarrow+\infty$, which is (5.50).
Remark 5.4. If $L_{i} M_{i}^{-\frac{2}{n-2}} \geq c>0$ for some constant $c>0$, then (5.13) yields $u_{i}(x) \leq c M^{-1}|x|^{2-n}$ for $M_{i}^{-\frac{2}{n-2}} \leq|x| \leq 1$. By passing to a subsequence, $M_{i} u_{i}(x)$ converges to a positive harmonic function $h(x)$ in $C_{\text {loc }}^{2}\left(B_{2} \backslash\{0\}\right)$. We claim

If $\lim _{i \rightarrow+\infty} L_{i} M_{i}^{-\frac{2}{n-2}}=+\infty$, then $h(x)=\frac{a}{|x|^{n-2}}+O(|x|)$ near 0 for some $a>0$.

Let $h(x)=\frac{a}{|x|^{n-2}}+b+O(|x|)$ for $a>0$ and $b \in \mathbb{R}$. By applying the

Pohozaev identity, we have

$$
\begin{align*}
& \frac{n-2}{2 n} \int_{|x| \leq 1}\left\langle x, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
& =\int_{|x|=1}\left(\frac{n-2}{2} \frac{\partial u_{i}}{\partial r} u+r\left|\frac{\partial u_{i}}{\partial r}\right|^{2}\right. \tag{5.88}\\
& \left.\quad-\frac{1}{2}\left|\nabla u_{i}\right|^{2} r-\frac{n-2}{2 n} K_{i}(x) u_{i}^{\frac{2 n}{n-2}}\right) d \sigma
\end{align*}
$$

By scaling, it is easy to see the left hand side of (5.88)

$$
=\frac{(n-2) \beta}{2 n} L_{i}^{2-n}\left(\int_{\mathbb{R}^{n}} Q(y) U^{\frac{2 n}{n-2}}(y) d y+o(1)\right),
$$

and the right hand side $=-c_{n} a b M_{i}^{-2}(1+o(1))$. Since

$$
\int_{\mathbb{R}^{n}} \nabla Q(y) U^{\frac{2 n}{n-2}}(y) d y=0
$$

by (5.50), (K1) yields $\int_{\mathbb{R}^{n}} Q(y) U^{\frac{2 n}{n-2}}(y) d y \neq 0$. Hence, if

$$
\lim _{i \rightarrow+\infty} L_{i}^{n-2} M_{i}^{-2}=+\infty
$$

then $a b=0$, i.e., $b=0$. Thus, the claim (5.87) is proved.

6. Preliminary results of global solutions

From now on, $u_{i}(x)$ is considered to be a solution of (1.3) defined in the whole \mathbb{R}^{n}. Theorem 1.2 implies that after passing to a subsequence, $\left\{u_{i}\right\}$ blows up only at finite points. We will prove this later and for the proof of Theorem 1.2, we assume first that $\left\{\hat{q}_{j}\right\}_{j=1}^{m}$ is the set of blowup points for $\left\{u_{i}\right\}$ with $m \geq 1$, and $u_{i} \rightarrow 0$ on any compact subset of $\mathbb{R}^{n} \backslash\left\{\hat{q}_{1}, \ldots, \hat{q}_{m}\right\}$. Let $l \leq m$ be the nonnegative integer such that $\hat{q}_{1}, \ldots, \hat{q}_{l}$ are simple-like blowup points and $\hat{q}_{l+1}, \ldots, \hat{q}_{m}$ are non-simplelike blowup points. For the definition of simple-like blowup points, see the end of Section 2. If there are no simple-like blowup points, we let $l=0$.

For each blowup point \hat{q}_{j}, we define the local maximum $M_{i, j}$ and the local maximum point in the following ways. Let δ_{0} be a small positive number such that the distance $d\left(\hat{q}_{j}, \hat{q}_{k}\right)$ from \hat{q}_{j} to \hat{q}_{k} is greater than
$2 \delta_{0}$. If u_{i} loses energy of one bubble near \hat{q}_{j}, that is, if (2.17) holds, then $M_{i, j}$ and $\hat{q}_{i, j}$ are defined by

$$
\begin{equation*}
M_{i, j}=u_{i}\left(\hat{q}_{i, j}\right)=\max _{\left|\hat{q}_{j}-x\right| \leq \delta_{0}} u_{i}(x) \tag{6.1}
\end{equation*}
$$

Let $L_{i, j}=L_{i}\left(\hat{q}_{i, j}\right)$ be the number defined in (2.15). If u_{i} loses energy of more than one bubble at \hat{q}_{j}, then there are two cases. The first one is described in (ii) of Theorem 2.5. In this case, $\hat{q}_{i, j}$ denotes the local maximum point z_{i} in the statement of (ii) of Theorem 2.5, and $M_{i, j}=u_{i}\left(\hat{q}_{i, j}\right)$. Note that in this case, \hat{q}_{j} is a simple-like blowup point,
(6.2) $\lim _{i \rightarrow+\infty} L_{i, j} M_{i, j}^{-\frac{2}{n-2}}=+\infty$, and $\lim _{i \rightarrow+\infty}\left(\left|\hat{q}_{i, j}-\hat{q}_{j}\right| M_{i, j}^{\frac{2}{n-2}}\right)=+\infty$
by Theorem 2.5. The second case is described in Theorem 2.7. In this case, $M_{i, j}$ and $L_{i, j}$ are defined as in (2.28) and (2.29), and $\hat{q}_{i, j}$ is defined to be $\hat{q}_{j}+M_{i, j}^{-\frac{2}{n-2}} z_{i}$, where z_{i} is in the statement of Theorem 2.7.

By Theorem 2.1, Theorem 2.5, and Theorem 2.7 and the remark after Definition 2.9, \hat{q}_{j} is a simple-like blowup point if and only if

$$
\begin{equation*}
L_{i, j} M_{i, j}^{-\frac{2}{n-2}} \geq c>0 \tag{6.3}
\end{equation*}
$$

Also, for $j \leq l$, we have

$$
\begin{equation*}
\min _{\left|x-\hat{q}_{j}\right| \leq \delta_{0}} u_{i}(x) \sim M_{i, j}^{-1} . \tag{6.4}
\end{equation*}
$$

For $l+1 \leq j \leq m$, we have then

$$
\begin{equation*}
\min _{\left|x-\hat{q}_{j}\right| \leq \delta_{0}} u_{i}(x) \sim L_{i, j}^{2-n} M_{i, j} \tag{6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{i}(x) \leq c\left|x-\hat{q}_{j}\right|^{-\frac{n-2}{2}} \tag{6.6}
\end{equation*}
$$

for $\left|x-\hat{q}_{j}\right| \leq \delta_{0}$ since they are non-simple-like blowup points.
One important situation is that for some j,

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} L_{i, j} M_{i, j}^{-\frac{2}{n-2}}=+\infty \tag{6.7}
\end{equation*}
$$

occurs. We claim
(6.8) If (6.7) holds for some j, then \hat{q}_{j} is the only simple-like blowup point, that is, $\quad l=1$.

Proof of (6.8). If $u_{i}(x)$ satisfies the assumption of Theorem 2.7 at q_{j}, then $m_{i} \sim M_{i, j}^{-1}$ by (6.4). Set $h(x)$ to be the limit of $m_{i}^{-1} u_{i}(x)$. Since $\lim _{i \rightarrow+\infty} L_{i, j} M_{i, j}^{-\frac{2}{n-2}}=+\infty,(5.87)$ yields that $h(x)=\frac{a}{\left|x-q_{j}\right|^{n-2}}$ for some $a>0$. By Lemma 6.1 (below), q_{j} is the only simple-like blowup point. So, we might assume either q_{j} is a simple blowup point or q_{j} is the one described by (ii) of Theorem 2.5. We note that for both cases, by letting an empty set $E, R=R_{i}, l=\delta L_{i, j}$ and $l_{0}=+\infty$, Lemma 3.5 yields

$$
\int_{R_{i} \leq|x| \leq L^{*}+_{i, j}(\delta)} v_{i}^{\frac{n+2}{n-2}}(y) d y \leq c_{1}\left(R_{i}^{-2}+\varepsilon\right)
$$

where $v_{i}(y)=M_{i, j}^{-1} u_{i}\left(q_{i, j}+M_{i, j}^{-\frac{2}{n-2}}\right), R_{i}$ is given in (2.14), and $L_{i, j}^{*}(\delta)=$ $\min \left(\delta L_{i, j}, \lambda M_{i, j}^{\frac{2}{n-2}}\right)$ for some fixed $\delta>0$. Now let x_{0} be another simple-like blowup point, i.e., either x_{0} is a simple blowup point or the one in case (ii) of Theorem 2.5. Say $x_{0}=q_{1} \neq q_{j}$. In any case, there is a small neighborhood ω of q_{0} such that $\min _{\omega} u_{i}(x) \sim$ $M_{i, 1}^{-1}$. Clearly, $\min _{\omega} u_{i}(x) \sim \min _{\left|x-q_{j}\right| \leq 1} u_{i}(x)$. Hence $M_{i, j} \sim M_{i, 1}$. Let $\omega_{i}^{*}=\left\{y \left\lvert\, q_{i, j}+M_{i, j}^{-\frac{2}{n-2}} y \in \omega\right.\right\}$. Then, $v_{i}(y) \leq c$ for $y \in \omega^{*}$. Since $\lim _{i \rightarrow+\infty} L_{i, j} M_{i, j}^{-\frac{2}{n-2}}=+\infty, L_{i, j} \gg\left|q_{j}-q_{1}\right| M_{i, j}^{\frac{2}{n-2}}$ for large i. Therefore, by choosing $\lambda \geq 2\left|q_{j}-q_{1}\right|$, we have $L_{i, j}^{*}(\delta)=\lambda M_{i, j}^{\frac{2}{n-2}}$, and

$$
\begin{aligned}
0<c_{2} & \leq \int_{\omega} u_{i}^{\frac{2 n}{n-2}}(x) d x \\
& =\int_{\omega_{i}^{*}} v_{i}^{\frac{2 n}{n-2}} d y \leq c \int_{\omega_{i}^{*}} v_{i}^{\frac{n+2}{n-2}}(y) d y \\
& \leq c \int_{R_{i} \leq|x| \leq L_{i, j}^{*}(\delta)} v_{i}^{\frac{n+2}{n-2}}(y) d y \\
& \leq c c_{1}\left(R_{i}^{-2}+\varepsilon\right) .
\end{aligned}
$$

Clearly, this yields a contradiction. Then (6.8) is proved.
One important consequence of (6.8) is that if $l=1$ and $j \geq 2$ or if $l \geq 2$ and $j \geq 1$, the inequality (6.6) always holds near \hat{q}_{j}. From it, we have $L_{i, j}^{n-2} \sim t_{i}^{-1} M_{i, j}^{\frac{2 \beta_{j}}{n-2}}$ which follows definition of $L_{i, j}$. To show (6.6) holds in these cases, it suffices for us to consider the case $l \geq 2$. By
(6.8), $\lim _{i \rightarrow \infty} L_{i, j} M_{i, j}^{-\frac{2}{n-2}}<\infty$ for all j. If (6.6) does not hold near \hat{q}_{j}, then Theorem 2.5 and (2.21) imply that \hat{q}_{j} is a simply blowup point. However, Theorem 2.2 implies $\left|\hat{q}_{i, j}-\hat{q}_{j}\right| M_{i, j}^{\frac{2}{n-2}} \leq c$. Together with the fact that \hat{q}_{j} is a simply blowup point, (6.6) holds at \hat{q}_{j}. Then it yields a contradiction again. Hence we prove the claim.

Now, we prove Theorem 1.2.
Proof of Theorem 1.2. Recall that $\left\{q_{1}, \cdots, q_{N}\right\}$ are the critical points of \hat{K}. Let q be a blowup point of $\left\{u_{i}\right\}$. We want to prove $\nabla \hat{K}(q)=0$. We may assume $q \neq \infty$. Now suppose that q is not a critical point of \hat{K}. Then by Corollary 2.3 and (6.8), we conclude that after passing to a subsequence, q is the only simple-like blowup point. Therefore, $\nabla \hat{K}(\hat{q})=0$ for any other blowup point $\hat{q} \neq q$, and it implies there are at most finite blowup points $\left\{\hat{q}_{1}, \cdots, \hat{q}_{m}\right\}$ which are contained in $\left\{q_{1}, \cdots, q_{N}\right\} \cup\{q\}$. Also by the Harnack inequality, $u_{i} \rightarrow 0$ uniformly on any compact subset of $\mathbb{R}^{n} \backslash\left\{\hat{q}_{1}, \cdots, \hat{q}_{m}\right\}$.

Let $M_{i, j}$ and $\hat{q}_{i, j}$ be defined as above. We may assume $\hat{q}_{1}=q$. Then

$$
\begin{equation*}
u_{i}(x) \leq c M_{i, 1}^{-1}\left|x-\hat{q}_{1}\right|^{2-n} \tag{6.9}
\end{equation*}
$$

for $x \notin \bigcup_{j \geq 2}^{m} B\left(\hat{q}_{j}, \delta_{0}\right)$, and by (6.6),

$$
\begin{equation*}
u_{i}(x) \leq c\left|x-\hat{q}_{j}\right|^{-\frac{n-2}{2}} \tag{6.10}
\end{equation*}
$$

holds for $\left|x-\hat{q}_{j}\right| \leq \delta_{0}$ and $j \geq 2$. Let $e_{1}=(1,0, \cdots, 0)$ and $\Omega_{i}=$ $\mathbb{R}^{n} \backslash \bigcup_{j=1}^{m} B\left(\hat{q}_{j}, \delta_{0}\right)$. We may assume $e_{1}=\frac{\nabla \hat{K}\left(\hat{q}_{1}\right)}{\left|\nabla \hat{K}\left(\hat{q}_{1}\right)\right|}$. By the Pohozaev identity,

$$
\begin{align*}
\int_{B\left(\hat{q}_{1}, \delta_{0}\right)} \frac{\partial K_{i}(x)}{\partial x_{1}} u_{i}^{\frac{2 n}{n-2}}(x) d x= & -\int_{\mathbb{R}^{n} \backslash B\left(\hat{q}_{1}, \delta_{0}\right)} \frac{\partial K_{i}}{\partial x_{1}} u_{i}^{\frac{2 n}{n-2}} d x \\
\leq & \sum_{j=2}^{m} \int_{B\left(\hat{q}_{j}, \delta_{0}\right)}\left|\nabla K_{i}\right| u_{i}^{\frac{2 n}{n-2}}(x) d x \\
& +\int_{\Omega_{i}}\left|\nabla K_{i}\right| u_{i}^{\frac{2 n}{n-2}} d x \tag{6.11}\\
\leq & c t_{i}\left\{\sum_{j=2}^{m} \delta_{0}^{\beta_{j}-1}+M_{i, 1}^{-\frac{2 n}{n-2}}\right\},
\end{align*}
$$

where inequalities (6.9) and (6.10) are used.
On the other hand, since \hat{q}_{1} is a blowup point,

$$
\begin{equation*}
\int_{B\left(\hat{q}_{1}, \delta_{0}\right)} u_{i}^{\frac{2 n}{n-2}}(x) d x \geq c_{n}>0 \tag{6.12}
\end{equation*}
$$

for some constant $c_{n}>0$. Since $\beta_{j}>1$ for $j \geq 2$, (6.11) implies

$$
c_{n} t_{i} \leq \int_{B\left(\hat{q}_{1}, \delta_{0}\right)} \frac{\partial K_{i}}{\partial x_{1}} u_{i}^{\frac{2 n}{n-2}}(x) d x \leq c t_{i}\left\{\sum_{j=2}^{m} \delta_{0}^{\beta_{j}-1}+M_{i, 1}^{-\frac{2 n}{n-2}}\right\},
$$

which obviously yields a contradiction when δ_{0} is small. The proof is finished q.e.d.

From now on, by passing to a subsequence, we may assume the blowup points are $\left\{q_{1}, \cdots, q_{m}\right\} \subset\left\{q_{1}, \cdots, q_{N}\right\}$ and $u_{i} \rightarrow 0$ uniformly on any compact subset of $\mathbb{R}^{n} \backslash\left\{q_{1}, \cdots, q_{m}\right\}$. Let $l \leq m$ be the nonnegative integer such that q_{1}, \ldots, q_{l} are simple-like blowup points and q_{l+1}, \ldots, q_{m} are non-simple-like blowup points. Set

$$
\begin{equation*}
m_{i}=\inf _{\mathbb{R}^{n}}\left(u_{i}(x)(1+|x|)^{n-2}\right) . \tag{6.13}
\end{equation*}
$$

Since $u_{i}(x) \rightarrow 0$ for $x \notin\left\{q_{1}, \ldots, q_{m}\right\}, m_{i} \rightarrow 0$ as $i \rightarrow+\infty$. Let

$$
h_{i}(x)=m_{i}^{-1} u_{i}(x) \text { for } x \in \mathbb{R}^{n} .
$$

Then $h_{i}(x)$ is bounded in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\left\{q_{1}, \ldots, q_{m}\right\}\right)$. After passing to a subsequence, $h_{i}(x)$ converges to $h(x)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\left\{q_{1}, \ldots, q_{m}\right\}\right)$. Since $m_{i} \rightarrow 0, h(x)$ satisfies

$$
\left\{\begin{array}{l}
\Delta h(x)=0 \text { in } \mathbb{R}^{n} \backslash\left\{q_{1}, \ldots, q_{m}\right\} \\
h(x)>0
\end{array}\right.
$$

By the Liouville Theorem, we have

$$
\begin{equation*}
h(x)=\sum_{j=1}^{m} \frac{\mu_{j}}{\left|x-q_{j}\right|}, \tag{6.14}
\end{equation*}
$$

where $\mu_{j} \geq 0$ and $\sum_{j=1}^{m} \mu_{j} \neq 0$.
Lemma 6.1. $\mu_{j}>0$ if and only if q_{j} is a simple-like blowup point.

Proof. Let q_{j} be a simple-like blowup point. By (6.4),

$$
m_{i} \sim M_{i, j}^{-1} .
$$

Thus,

$$
\begin{aligned}
& \frac{1}{m_{i}} \int_{\left|x-q_{j}\right| \leq \delta_{0}} K_{i}(x) u_{i}^{\frac{n+2}{n-2}}(x) d x \\
& \quad \geq c_{1} M_{i, j} \int_{\left|x-q_{j}\right| \leq \delta_{0}} u_{i}^{\frac{n+2}{n-2}} d x \geq c_{2}>0 .
\end{aligned}
$$

It implies $\mu_{j}>0$.
Conversely, if q_{j} is not a simple-like blowup point, then by (6.6) and (6.5),

$$
u_{i}(x) \leq\left\{\begin{array}{cc}
\left|x-q_{j}\right|^{-\frac{n-2}{2}} & \text { for }|x| \leq M_{i}^{-\frac{2}{n-2}} \tag{6.15}\\
M_{i}^{-1}\left|x-q_{j}\right|^{-n+2} & \text { for } M_{i}^{-\frac{2}{n-2}} \leq\left|x-q_{j}\right| \leq L_{i} M_{i}^{-\frac{2}{n-2}} \\
L_{i}^{2-n} M_{i} & \text { for } L_{i} M_{i}^{-\frac{2}{n-2}} \leq\left|x-q_{j}\right| \leq \delta_{0}
\end{array}\right.
$$

where for the simplicity of notations, M_{i} and L_{i} denote $M_{i, j}$ and $L_{i, j}$, respectively. Hence

$$
\begin{equation*}
m_{i} \sim L_{i}^{2-n} M_{i} . \tag{6.16}
\end{equation*}
$$

Applying (6.16), a straightforward computation shows

$$
\frac{1}{m_{i}} \int_{\left|x-q_{j}\right| \leq \delta_{0}} K_{i}(x) u_{i}^{\frac{n+2}{n-2}}(x) d x \leq \frac{c}{m_{i}}\left\{M_{i}^{-1}+m_{i}^{\frac{n+2}{n-2}}\right\} \rightarrow 0 .
$$

Here we have used $m_{i} M_{i} \sim L_{i}^{2-n} M_{i}^{2} \rightarrow+\infty$ as $i \rightarrow+\infty$ by (6.2). Therefore, $\mu_{j}=0$. q.e.d.

From Lemma 6.1, we immediately have $l \geq 1$. The next lemma tell us that there are some constraints for a collection of critical points to be a set of blowup points.

Lemma 6.2.

(i) If $l \geq 2$, then we have $\beta_{j}>\frac{n-2}{2}$ for all j, or $\beta_{j}=\frac{n-2}{2}$ for all j, or $\beta_{j}<\frac{n-2}{2}$ for all j. Moreover, $\beta_{1}=\beta_{2}=\ldots=\beta_{l}$ always holds, $\beta_{1}>\beta_{j}^{2}$ for $j \geq l+1$ if $\beta_{j}>\frac{n-2}{2}$ for all j, and $\beta_{1}<\beta_{j}$ for $j \geq l+1$ if $\beta_{j}<\frac{n-2}{2}$ for all j.
(ii) If $l=1$, then we have $\beta_{j}>\frac{n-2}{2}$ for $2 \leq j \leq m$, or $\beta_{j}<\frac{n-2}{2}$ for $2 \leq j \leq m$, or $\beta_{j}=\frac{n-2}{2}$ for $2 \leq j \leq m$. Furthermore, if $\beta_{1} \leq \frac{n-2}{2}$, then $\beta_{j}<\frac{n-2}{2}$ for $2 \leq j \leq m$. If $\beta_{j}>\frac{n-2}{2}$ for $2 \leq j \leq m$, then $\beta_{1}>\beta_{j}$ for $j \geq 2$.

Proof. We prove (i) first. Since $l \geq 2$, by (6.8), the inequality (6.6) holds near any q_{j} and $L_{i, j}^{2-n} \sim t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}$. By (6.8) again and the fact q_{1}, \ldots, q_{l} are simple-like blowup points, we also have $L_{i, j} \sim M_{i, j}^{\frac{2}{n-2}}$ for $1 \leq j \leq l$. Thus, $M_{i, j}$ satisfies

$$
\begin{align*}
& L_{i, j}^{2-n} \sim t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} \text { for } 1 \leq j \leq m, \tag{6.17}\\
& m_{i} \sim L_{i, j}^{2-n} M_{i, j} \text { for } 1 \leq j \leq m, \tag{6.18}
\end{align*}
$$

and by Lemma 6.1

$$
\begin{equation*}
M_{i, j}=o(1) M_{i, k} \text { for } 1 \leq j \leq l \text { and } k \geq l+1 . \tag{6.19}
\end{equation*}
$$

By (6.17) and (6.18), for $j \neq k$,

$$
\begin{equation*}
M_{i, j}^{1-\frac{2 \beta_{j}}{n-2}} \sim M_{i, k}^{1-\frac{2 \beta_{k}}{n-2}} \tag{6.20}
\end{equation*}
$$

which implies that there are only three possibilities: $\beta_{j}>\frac{n-2}{2}$ for all j, or $\beta_{j}=\frac{n-2}{2}$ all j, or $\beta_{j}<\frac{n-2}{2}$ for all j. Since $M_{i, j} \sim M_{i, k}$ if $1 \leq j, k \leq l$, by (6.20), we have $\beta_{j}=\beta_{k}$. Again by (6.20) and (6.19), we obtain the inequalities: $\beta_{1}>\beta_{j}$ for $j \geq l+1$ if $\beta_{1}>\frac{n-2}{2}$, or $\beta_{1}<\beta_{j}$ for $j \geq l+1$ if $\beta_{1}<\frac{n-2}{2}$.

To prove (ii), we note that by (6.15), (6.17) and (6.18) holds for $2 \leq j \leq m$. Thus, (6.20) holds for $j \neq k \geq 2$, and then we have $\beta_{j}>\frac{n-2}{2}$ for all $j \geq 2$, or $\beta_{j}=\frac{n-2}{2}$ for all $j \geq 2$, or $\beta_{j}<\frac{n-2}{2}$ for all $j \geq 2$.

By (6.19) and

$$
m_{i} \sim M_{i, 1}^{-1} \gg L_{i, 1}^{2-n} M_{i, 1} \geq t_{i} M_{i, 1}^{1-\frac{2 \beta_{1}}{n-2}}
$$

we have for $j \geq 2$,

$$
M_{i, j}^{1-\frac{2 \beta_{j}}{n-2}} \gg M_{i, 1}^{1-\frac{2 \beta_{1}}{n-2}} .
$$

Hence, if $\beta_{1} \leq \frac{n-2}{2}$, we have $\beta_{j}<\frac{n-2}{2}$ for all $j \geq 2$. If $\beta_{j} \geq \frac{n-2}{2}$ for $j \geq 2$, then $\beta_{1}>\frac{n-2}{2}$ and for $j \geq 2$

$$
\begin{aligned}
\left(\frac{2 \beta_{j}}{n-2}-1\right) \log M_{i, 1} & \ll\left(\frac{2 \beta_{j}}{n-2}-1\right) \log M_{i, j} \\
& \ll\left(\frac{2 \beta_{1}}{n-2}-1\right) \log M_{i, 1}
\end{aligned}
$$

which implies $\beta_{1}>\beta_{j}$. q.e.d.

7. Estimates for the Pohozaev identity

As in Section 6, let q_{1}, \ldots, q_{l} denote all the simple-like blowup points, and let q_{l+1}, \ldots, q_{m} denote the non-simple-like blowup points. Also, let $M_{i, j}, q_{i, j}$ and $L_{i, j}$ be defined as in Section 6. Recall $m_{i}^{-1} \sim M_{i, 1}$. Hereafter, $h(x)$ denotes the limit of $M_{i, 1} u_{i}(x)$. By Lemma 6.1,

$$
h(x)=\sum_{j=1}^{l} \frac{\mu_{j}}{\left|x-q_{j}\right|^{n-2}}
$$

where $\mu_{j}>0$. For $1 \leq j \leq l$, the regular part of h at q_{j} is denoted by

$$
h_{j}(x)=\sum_{k=1, k \neq j}^{l} \frac{\mu_{k}}{\left|x-q_{k}\right|^{n-2}}
$$

The Pohozaev identity plays an important role when we come to study the interaction of different blowup points. Therefore, we have to compute the terms appearing in the Pohozaev identity very precisely. For example, we consider the case when q_{j} is not a simple-like blowup point. Then $h(x)$ of Section 6 is smooth at q_{j}. By a direct computation, the Pohozaev identity leads to

$$
\begin{aligned}
& \frac{n-2}{2 n} \int_{\left|x-q_{j}\right| \leq \delta_{0}}\left\langle x-q_{j}, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}} d x \\
& =\int_{\left|x-q_{j}\right|=\delta_{0}}\left(\frac{n-2}{2} u_{i} \frac{\partial u_{i}}{\partial \nu}-\frac{1}{2} \delta_{0}\left|\nabla u_{i}\right|^{2}\right. \\
& \left.\quad+\delta_{0}\left|\frac{\partial u_{i}}{\partial \nu}\right|^{2}+\frac{n-2}{2 n} \delta_{0} K_{i} u_{i}^{\frac{2 n}{n-2}}\right) d \sigma \\
& =o(1) M_{i, 1}^{-2},
\end{aligned}
$$

because $h(x)=\lim _{i \rightarrow+\infty} M_{i, 1} u_{i}$ is smooth at q_{j}. However, it does not show any information about $M_{i, j}$. The following lemma improves the estimate.

Lemma 7.1. Suppose $\beta_{j} \geq \frac{2(n-2)}{n}$ for all j. Then the following hold:
(1) For $m \geq j \geq l+1$, we have

$$
\begin{align*}
& \frac{n-2}{2 n} \int_{\left|x-q_{j}\right| \leq \delta_{0}} \nabla K_{i}(x) u_{i}^{\frac{2 n}{n-2}}(x) d x \tag{7.1}\\
& =-\left(1+o(1)+c_{1}\left(\delta_{0}\right)\right)(n-2)\left|S^{n-1}\right| \nabla h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1} \\
& \quad+o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)+O\left(\delta_{0}^{n-1} t_{i} M_{i, 1}^{\frac{-2 n}{n-2}}\right), \text { and } \\
& \frac{n-2}{2 n} \int_{\left|x-q_{j}\right| \leq \delta_{0}}\left\langle x-q_{j}, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
& \quad=-\left(1+o(1)+c_{2}\left(\delta_{0}\right)\right) \frac{(n-2)^{2}}{2}\left|S^{n-1}\right| h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1} \tag{7.2}\\
& 2) \quad \\
& \quad+o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)+O\left(\delta_{0}^{n-1} t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}\right),
\end{align*}
$$

where $o(1) \rightarrow 0$ as $i \rightarrow+\infty, c_{1}(\delta)$ and $c_{2}(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.
(2) If $l \geq 2$, then $1 \leq j \leq l$,

$$
\begin{align*}
& \frac{n-2}{2 n} \int_{\left|x-q_{j}\right| \leq \delta_{0}} \nabla K_{i}(x) u_{i}^{\frac{2 n}{n-2}} d x \tag{7.3}\\
& \quad=-\left(1+o(1)+c_{1}(\delta)\right)(n-2)\left|S^{n-1}\right| \nabla h_{j}\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1} \\
& \quad+o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)+O\left(\delta_{0}^{n-1} t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}\right),
\end{align*}
$$

and

$$
\begin{align*}
\frac{n-2}{2 n} & \int_{\left|x-q_{j}\right| \leq \delta_{0}}\left\langle x-q_{j}, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}} d x \\
= & -\left(1+o(1)+c_{2}(\delta)\right) \frac{(n-2)^{2}}{2}\left|S^{n-1}\right| h_{j}\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1} \tag{7.4}\\
& +o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)+O\left(\delta_{0}^{n-1} t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}\right)
\end{align*}
$$

Proof of Lemma 7.1. For each q_{j} considered here, $u_{i}(x)$ satisfies

$$
\left\{\begin{array}{l}
u_{i}(x) \leq c\left|x-q_{j}\right|^{-\frac{n-2}{2}} \text { for }\left|x-q_{j}\right| \leq \delta_{0} \tag{7.5}\\
L_{i, j}^{2-n} \sim m_{i} M_{i, j}^{-1} \sim t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}, \quad \text { and } \\
\beta_{j}<n-2
\end{array}\right.
$$

due to (6.8) and Corollary 1.3, where m_{i} is the minimum of u_{i} in (6.13). We separate our argument into two cases which require different estimates. Case (I) is when u_{i} loses energy of one bubble only and Case (II) is when u_{i} loses energy of more than one bubble.

For Case (I), let

$$
\begin{equation*}
\widetilde{u}_{i}(x)=M_{i, j}^{-1} u_{i}\left(q_{i, j}+M_{i, j}^{-\frac{2}{n-2}} x\right) \tag{7.6}
\end{equation*}
$$

Then by Lemma 3.5 and (7.5), we have

$$
\begin{equation*}
\left|\widetilde{u}_{i}(x)-U_{i}(x)\right| \leq c L_{i, j}^{-n+2} \text { for }|x| \leq \delta_{0} M_{i, j}^{\frac{2}{n-2}} \tag{7.7}
\end{equation*}
$$

(Note that in this case, $q_{i, j}$ is the local maximum given in (2.12)), where U_{i} is the solution of

$$
\begin{equation*}
\Delta U_{i}+K_{i}\left(q_{i, j}\right) U_{i}^{\frac{n+2}{n-2}}=0 \text { in } \mathbb{R}^{n} \tag{7.8}
\end{equation*}
$$

with $U_{i}(0)=\max _{\mathbb{R}^{n}} U_{1}(x)=1$.
For Case (II), we can apply Theorem 2.7 to estimate the difference between \widetilde{u}_{i} and $a_{i} U_{\lambda_{i}}$. In this case, $\beta_{j}<\frac{n-2}{2}$ always.

In the following, let

$$
L_{i, j}^{*}=\min \left(L_{i, j}, \delta_{0} M_{i, j}^{\frac{2}{n-2}}\right) \text { and } l_{i}=\delta_{0} M_{i, j}^{\frac{2}{n-2}}
$$

for the simplicity of notations. Let U_{i} denote the solution of (7.8) for Case (I) and denote $a_{i} U_{\lambda_{i}}$ for Case (II). Set $g_{i}(x)=\widetilde{u}_{i}(x)-U_{i}(x)$. Then g_{i} satisfies

$$
\begin{equation*}
\triangle g_{i}+p K_{i}\left(q_{i, j}\right) U_{i}^{p-1} g_{i}=\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p}+H_{1}, \tag{7.9}
\end{equation*}
$$

where $p=\frac{n+2}{n-2}, \widetilde{K}_{i}(x)=K_{i}\left(q_{i, j}+M_{i, j}^{-\frac{2}{n-2}} x\right)$, and

$$
\begin{equation*}
H_{1}(x)=K_{i}\left(q_{i, j}\right)\left[U_{i}^{p}-\widetilde{u}_{i}^{p}+p U_{i}^{p-1} g_{i}\right] . \tag{7.10}
\end{equation*}
$$

To estimate the term H_{1}, we consider Case (I) first. By Lemma 3.5, we have

$$
\begin{equation*}
\left|H_{1}(x)\right| \leq c_{1} U_{i}^{p-2}\left|g_{i}\right|^{2} \leq c_{2} U_{i}^{p-2}\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)^{2} \tag{7.11}
\end{equation*}
$$

when $|x| \leq L_{i, j}^{*}$, and

$$
\begin{equation*}
\left|H_{1}(x)\right| \leq c_{1}\left(m_{i} M_{i, j}^{-1}\right)^{p} \tag{7.12}
\end{equation*}
$$

when $L_{i, j}^{*} \leq|x| \leq \delta_{0} M_{i, j}^{\frac{2}{n-2}}$.
For Case (II), we apply Theorem 2.7 to obtain

$$
\begin{align*}
& \left|H_{1}(x)\right| \leq c|x|^{-\frac{n+2}{2}} \quad \text { for }|x| \leq R_{i}^{-2} \\
& \left|H_{1}(x)\right| \leq c R_{i}^{-n-2}|x|^{-n-2} \quad \text { for } R_{i}^{-2} \leq|x| \leq R_{i}^{-1} \\
& \left|H_{1}(x)\right| \leq c U_{i}^{p-2}\left|g_{i}\right|^{2} \leq c_{2} U_{i}^{p-2}\left(R_{i}^{-2 n+4}|x|^{-2 n+4}+L_{i, j}^{-2 n+4}\right) \tag{7.13}\\
& \quad \text { for } R_{i}^{-1} \leq|x| \leq L_{i, j}^{*} \\
& \left|H_{1}(x)\right| \leq c L_{i, j}^{-(n-2) p} \quad \text { for } L_{i, j}^{*} \leq|x| \leq \delta_{0} M_{i, j}^{\frac{2}{n-2}},
\end{align*}
$$

where $R_{i}=L_{i, j}^{\gamma}$ and $\gamma=\left(1-\frac{2 \beta_{j}}{n-2}\right)^{-1}$.
Let

$$
\partial_{\lambda} U_{i}=-\frac{n-2}{2} U_{i}(x)-x \cdot \nabla U_{i}
$$

and

$$
\partial_{\lambda} \widetilde{u}_{i}(x)=-\frac{n-2}{2} \widetilde{u}_{i}(x)-x \cdot \nabla \widetilde{u}_{i}(x) .
$$

Multiplying (7.9) by ∇U_{i}, we have

$$
\begin{align*}
\int_{|x| \leq l_{i}} & \nabla U_{i}\left(\triangle g_{i}+p K_{i}\left(q_{i, j}\right) U_{i}^{\frac{4}{n-2}} g_{i}\right) d x \\
= & \int_{|x| \leq l_{i}}\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p} \nabla \widetilde{u}_{i} d x \\
& +\int_{|x| \leq l_{i}}\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p}\left(\nabla U_{i}-\nabla \widetilde{u}_{i}\right) d x \tag{7.14}\\
& +\int_{|x| \leq l_{i}} H_{1}(x) \nabla U_{i} d x \\
\equiv & I+I I+I I I .
\end{align*}
$$

Multiplying (7.9) by $\partial_{\lambda} U_{i}$, we have

$$
\begin{align*}
\int_{|x| \leq l_{i}} & \partial_{\lambda} U_{i}\left(\triangle g_{i}+p K_{i}\left(q_{i, j}\right) U_{i}^{\frac{4}{n-2}} g_{i}\right) d x \\
= & \int_{|x| \leq l_{i}}\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p} \partial_{\lambda} \widetilde{u}_{i} d x \\
& +\int_{|x| \leq l_{i}}\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p}\left(\partial_{\lambda} U_{i}-\partial_{\lambda} \widetilde{u}_{i}\right) d x \tag{7.15}\\
& +\int_{|x| \leq l_{i}} H_{1}(x) \partial_{\lambda} U_{i} d x \\
& \equiv I^{a}+I I^{a}+I I I^{a} .
\end{align*}
$$

Let $y=M_{i, j}^{-\frac{2}{n-2}} x$. By integration by parts,

$$
\begin{align*}
I= & \frac{1}{p+1} \int_{|x| \leq l_{i}} \nabla_{x} \widetilde{K}_{i} \widetilde{u}_{i}^{p+1} d x \\
& +O\left(\int_{|x|=l_{i}}\left|K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right| \widetilde{u}_{i}^{p+1} d s\right) \tag{7.16}\\
= & \frac{1}{p+1} M_{i, j}^{-\frac{2}{n-2}} \int_{|y| \leq \delta_{0}} \nabla_{y} K_{i} u_{i}^{p+1} d y \\
& +O\left(\delta_{0}^{n-1} t_{i} M_{i, j}^{-\frac{2}{n-2}}\left(m_{i}\right)^{\frac{2 n}{n-2}}\right),
\end{align*}
$$

By scaling, we have

$$
\begin{align*}
I^{a}= & \frac{1}{p+1} \int_{|x| \leq l_{i}}\left\langle x, \nabla_{x} \widetilde{K}_{i}\right\rangle \widetilde{u}_{i}^{p+1} d x \\
& +O\left(\int_{|x|=l_{i}} l_{i}\left|K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right| \widetilde{u}_{i}^{p+1} d s\right) \tag{7.17}\\
= & \frac{1}{p+1} \int_{|y| \leq \delta_{0}}\left\langle y, \nabla_{y} K_{i}\right\rangle u_{i}^{p+1} d y \\
& +O\left(\delta_{0}^{n-1} t_{i}\left(m_{i}\right)^{\frac{2 n}{n-2}}\right) .
\end{align*}
$$

To estimate the terms $I I, I I I, I I^{a}$ and $I I I^{a}$, we consider Case (I) first. By (7.7) and integration by parts,

$$
\begin{align*}
|I I| \leq & c \int_{|x| \leq l_{i}}\left\{\left|\left(\nabla_{x} \widetilde{K}_{i}\right) \widetilde{u}_{i}^{p}\right|+\left|\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \nabla_{x} \widetilde{u}_{i}^{p}\right|\right\}\left|\left(\widetilde{u}_{i}-U_{i}\right)\right| d y \tag{7.18}\\
& +c \int_{|x|=l_{i}}\left|\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p}\left(\widetilde{u}_{i}-U_{i}\right)\right| d s \\
\leq & c \int_{|x| \leq L_{i, j}^{*}} \frac{L_{i, j}^{-2 n+4}}{(1+|x|)^{n-\beta_{j}+3}} d x+O\left(\delta_{0}^{n-1} t_{i} M_{i, j}^{-\frac{2}{n-2}} m_{i}^{\frac{2 n}{n-2}}\right) \\
\leq & O\left[L_{i, j}^{-2 n+4}\left\{\begin{array}{cc}
1, & \beta_{j}<3 \\
\log L_{i, j}, & \beta_{j}=3 \\
L_{i, j}^{\beta_{j}-3}, & \beta_{j}>3
\end{array}\right\}+\delta_{0}^{n-1} t_{i} M_{i, j}^{-\frac{2}{n-2}} m_{i}^{\frac{2 n}{n-2}}\right] \\
= & o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2}{n-2}}\right)+O\left(\delta_{0}^{n-1} t_{i} M_{i, j}^{-\frac{2}{n-2}}\left(m_{i}\right)^{\frac{2 n}{n-2}}\right)
\end{align*}
$$

as $i \rightarrow \infty$. Here we have used the fact $M_{i, j}\left|q_{j}-q_{i, j}\right|^{\frac{n-2}{2}}$ is bounded and the following estimates:

$$
\left\{\begin{array}{l}
\widetilde{u}_{i}(x) \sim m_{i} M_{i, j}^{-1} \text { for }|x| \geq L_{i, j}^{*}, \text { and } \tag{7.19}\\
\left|K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right| \leq c_{1} t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\left(1+|x|^{\beta_{j}}\right) \\
\left|\nabla \widetilde{K}_{i}(x)\right| \leq c_{1} t_{i} M_{i}^{-\frac{2\left(\beta_{j}-1\right)}{n-2}}\left(1+|x|^{\beta_{j}-1}\right)
\end{array}\right.
$$

Similarly, we have

$$
\begin{align*}
\left|I I^{a}\right| \leq & c \int_{|x| \leq l_{i}}\left|\left\langle x, \nabla_{x}\left[\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p}\right]\right\rangle\left(\widetilde{u}_{i}-U_{i}\right)\right| d y \\
& +c \int_{|x|=l_{i}}\left|\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p}\left(u_{i}-U_{i}\right)\right| d s \\
\leq & c \int_{|x| \leq L_{i, j}^{*}} \frac{L_{i, j}^{-2 n+4}}{(1+|x|)^{n-\beta_{j}+2}} d x+O\left(\delta_{0}^{n-1} t_{i} m_{i}^{\frac{2 n}{n-2}}\right) \tag{7.20}\\
\leq & O\left[L_{i, j}^{-2 n+4}\left\{\begin{array}{cc}
1, & \beta_{j}<2 \\
\log L_{i, j}, & \beta_{j}=2 \\
L_{i, j}^{\beta_{j}-2}, & \beta_{j}>2
\end{array}\right\}\right]+O\left(\delta_{0}^{n-1} t_{i} m_{i}^{\frac{2 n}{n-2}}\right) \\
= & o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2}{n-2}}\right)+O\left(\delta_{0}^{n-1} t_{i}\left(m_{i}\right)^{\frac{2 n}{n-2}}\right)
\end{align*}
$$

as $i \rightarrow \infty$. Here we have used the fact that by (7.5) and $m_{i} \rightarrow 0$, which implies

$$
\begin{equation*}
L_{i, j}^{-1} \sim o\left(M_{i, j}^{-\frac{1}{n-2}}\right) . \tag{7.21}
\end{equation*}
$$

For the terms $I I I$ and $I I I^{a}$, we have by (7.11) and (7.12),

$$
\begin{align*}
|I I I| & \leq c \int_{|x| \leq L_{i, j}^{*}}\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)^{2} \frac{1}{(1+|x|)^{5}} d x+O\left(\delta_{0}^{n-1} t_{i} M_{i}^{-\frac{2}{n-2}} m_{i}^{\frac{2 n}{n-2}}\right) \tag{7.22}\\
& \leq O\left[L_{i, j}^{-2 n+4}\left\{\begin{array}{cc}
1, & n<5 \\
\log L_{i, j}, & n=5 \\
L_{i, j}^{n-5}, & n>5
\end{array}\right\}+\delta_{0}^{n-1} t_{i} M_{i}^{-\frac{2}{n-2}} m_{i}^{\frac{2 n}{n-2}}\right] \\
& =o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2}{n-2}}\right)+O\left(\delta_{0}^{n-1} t_{i} M_{i}^{-\frac{2}{n-2}} m_{i}^{\frac{2 n}{n-2}}\right)
\end{align*}
$$

and

$$
\begin{align*}
\left|I I I^{a}\right| & \leq c \int_{|x| \leq L_{i, j}^{*}}\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)^{2} \frac{1}{(1+|x|)^{4}} d x+O\left(\delta_{0}^{n-1} t_{i} m_{i}^{\frac{2 n}{n-2}}\right) \tag{7.23}\\
& \leq O\left[L_{i, j}^{-2 n+4}\left\{\begin{array}{cc}
1, & n<4 \\
\log L_{i, j}, & n=4 \\
L_{i, j}^{n-4}, & n>4
\end{array}\right\}+\delta_{0}^{n-1} t_{i} m_{i}^{\frac{2 n}{n-2}}\right] \\
& =o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)+O\left(\delta_{0}^{n-1} t_{i} m_{i}^{\frac{2 n}{n-2}}\right)
\end{align*}
$$

as $i \rightarrow \infty$. Thus for Case (I), from (7.16), (7.18) and (7.22), we obtain

$$
\begin{align*}
\int_{|x| \leq l_{i}} & \nabla U_{i}\left(\triangle g_{i}+p K_{i}\left(q_{i, j}\right) U_{i}^{\frac{4}{n-2}} g_{i}\right) d x \\
= & \frac{1}{p+1} M_{i, j}^{-\frac{2}{n-2}} \int_{|y| \leq \delta_{1}} \nabla_{y} K_{i} u_{i}^{p+1} d y+o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2}{n-2}}\right) \tag{7.24}\\
& +O\left(\delta_{0}^{n-1} t_{i} M_{i, j}^{-\frac{2}{n-2}}\left(m_{i}\right)^{\frac{2 n}{n-2}}\right)
\end{align*}
$$

as $i \rightarrow \infty$. From (7.17), (7.20) and (7.23), we have

$$
\begin{align*}
\int_{|x| \leq l_{i}} & \partial_{\lambda} U_{i}\left(\triangle g_{i}+p K_{i}\left(q_{i, j}\right) U_{i}^{\frac{4}{n-2}} g_{i}\right) d x \\
= & \frac{1}{p+1} \int_{|y| \leq \delta_{0}}\left\langle y, \nabla_{y} K_{i}\right\rangle u_{i}^{p+1} d y+o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right) \tag{7.25}\\
& +O\left(\delta_{0}^{n-1} t_{i}\left(m_{i}\right)^{\frac{2 n}{n-2}}\right)
\end{align*}
$$

as $i \rightarrow \infty$.
For Case (II), we have $1<\beta_{j}<\frac{n-2}{2}$ and $n>4$. By using (ii) of Theorem 2.7, we decompose $I I$ and $I I^{a}$ into three terms respectively.

$$
\begin{aligned}
I I & =\int_{|x| \leq R_{i}^{-1}}+\int_{R_{i}^{-1} \leq|x| \leq L_{i, j}^{*}}+\int_{L_{i, j}^{*} \leq|x| \leq l_{i}} \\
& \equiv I I_{1}+I I_{2}+I I_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
I I^{a} & =\int_{|x| \leq R_{i}^{-1}}+\int_{R_{i}^{-1} \leq|x| \leq L_{i, j}^{*}}+\int_{L_{i, j}^{*} \leq|x| \leq l_{i}} \\
& \equiv I I_{1}^{a}+I I_{2}^{a}+I I_{3}^{a}
\end{aligned}
$$

From integration by parts, (7.19), the fact $M_{i, j}\left|q_{j}-q_{i, j}\right|^{\frac{n-2}{2}}$ is bounded and Theorem 2.7,

$$
\begin{aligned}
& I I_{1}=- \frac{1}{p+1} \int_{|x| \leq R_{i}^{-1}} \nabla_{x} \widetilde{K}_{i} \widetilde{u}_{i}^{p+1} d x \\
&+ O\left[\int_{|x|=R_{i}^{-1}} t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} R_{i}^{-\beta_{j}} d s\right] \\
&+\int_{|x| \leq R_{i}^{-1}}\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p} \nabla U_{i} d x \\
&=- \frac{1}{p+1}\left(\int_{|x| \leq R_{i}^{-2}}+\int_{R_{i}^{-2} \leq|x| \leq R_{i}^{-1}}\right)+O\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} R_{i}^{-n+1-\beta_{j}}\right) \\
&+O\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\left(1+R_{i}^{-\beta_{j}}\right) \int_{|x| \leq R_{i}^{-1}}|x|^{-\frac{n-2}{2} p} M_{i, j}^{-\frac{2}{n-2}} d x\right) \\
&=O\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} R_{i}^{-2 \beta_{j}+2}+t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} R_{i}^{-n+1-\beta_{j}}+t_{i} M_{i, j}^{-\frac{2 \beta_{j}+2}{n-2}} R_{i}^{-\frac{n-2}{2}}\right) . \\
& I I_{1}^{a}= \frac{-1}{p+1} \int_{|x| \leq R_{i}^{-1}}\left\langle x, \nabla_{x} \widetilde{K}_{i}\right) \widetilde{u}_{i}^{p+1} d x \\
&+O\left[\int_{|x|=R_{i}^{-1}} R_{i}^{-1} t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} R_{i}^{-\beta_{j}} d s\right] \\
&+\int_{|x| \leq R_{i}^{-1}}\left(K_{i}\left(q_{i, j}\right)-\widetilde{K}_{i}(x)\right) \widetilde{u}_{i}^{p} \partial_{\lambda} U_{i} d x \\
&= \frac{-1}{p+1}\left(\int_{|x| \leq R_{i}^{-2}}+\int_{R_{i}^{-2} \leq|x| \leq R_{i}^{-1}}\right)+O\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} R_{i}^{-n-\beta_{j}}\right) \\
&+O\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\left(1+R_{i}^{-\beta_{j}}\right) \int_{|x| \leq R_{i}^{-1}}|x|^{-\frac{n-2}{2} p} d x\right) \\
&= O\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} R_{i}^{-2 \beta_{j}}+t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} R_{i}^{-n-\beta_{j}}+t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} R_{i}^{-\frac{n-2}{2}}\right) . \\
& \operatorname{Recall} \text { that } R_{i}^{-1}=L_{i, j}^{-\gamma}=o\left(M_{i, j}^{-\frac{\beta_{j}}{n-2}}\right) . \text { Thus, } \\
& I I_{1}=o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2}{n-2}}\right) \\
& o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)
\end{aligned}
$$

as $i \rightarrow \infty$ if $\beta_{j} \geq \frac{2(n-2)}{n}$. Here is the place we need $\beta_{j} \geq \frac{2(n-2)}{n}$.

From integration by parts and Theorem 2.7,

$$
\begin{align*}
&\left|I I_{2}\right| \leq c t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} \int_{R_{i}^{-1} \leq|x| \leq L_{i, j}^{*}} \frac{|x|^{\beta_{j}-1}}{(1+|x|)^{n+2}} \\
& \cdot\left(R_{i}^{-n+2}|x|^{n+2}+L_{i, j}^{-n+2}\right) d x \\
& \leq c\left(t_{i} M_{i, j}^{\left.-\frac{2 \beta_{j}}{n-2}\right)^{2}}\left\{\begin{array}{cc}
1, & \beta_{j}<3 \\
\log L_{i, j}, & \beta_{j}=3 \\
L_{i, j}^{\beta_{j}-3}, & \beta_{j}>3
\end{array}\right\}\right. \tag{7.26}\\
&=o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2}{n-2}}\right), \text { and } \\
&\left|I I_{2}^{a}\right| \leq c t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} \int_{R_{i}^{-1} \leq|x| \leq L_{i, j}^{*}} \frac{|x|^{\beta_{j}}}{(1+|x|)^{n+2}} \\
& \cdot\left(R_{i}^{-n+2}|x|^{-n+2}+L_{i, j}^{-n+2}\right) d x \\
& \leq c\left(t_{i} M_{i, j}^{\left.-\frac{2 \beta_{j}}{n-2}\right)^{2}}\left\{\begin{array}{cc}
1, & \beta_{j}<2 \\
\log L_{i, j}, & \beta_{j}=2 \\
L_{i, j}^{\beta_{j}-2}, & \beta_{j}>2
\end{array}\right\}\right. \tag{7.27}\\
&=o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2}{n-2}}\right) .
\end{align*}
$$

For $I I_{3}$ and $I I_{3}^{a}$, we have

$$
\begin{align*}
\left|I I_{3}\right| & \leq c t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} \int_{L_{i, j}^{*} \leq|x| \leq l_{i}}|x|^{\beta_{j}-1}\left(L_{i, j}^{-n+2}\right)^{p+1} d x \\
& =O\left[\delta_{0}^{n+\beta_{j}-1} t_{i} M_{i, j}^{-\frac{2}{n-2}}\left(M_{i, j} L_{i, j}^{-n+2}\right)^{p+1}\right] \tag{7.28}\\
& =O\left[\delta_{0}^{n-1} t_{i} M_{i, j}^{-\frac{2}{n-2}}\left(m_{i}\right)^{p+1}\right], \quad \text { and },
\end{align*}
$$

$$
\begin{align*}
\left|I I_{3}^{a}\right| & \leq c t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} \int_{L_{i, j} \leq|x| \leq l_{i}}\left(L_{i, j}^{-n+2}\right)^{p+1} d x \\
& =O\left[\delta_{0}^{n+\beta_{j}} t_{i}\left(M_{i, j} L_{i, j}^{-n+2}\right)^{p+1}\right] \tag{7.29}\\
& =O\left[\delta_{0}^{n-1} t_{i}\left(m_{i}\right)^{p+1}\right] .
\end{align*}
$$

To estimate $I I I$, note that $n \geq 4$ and then

$$
\begin{array}{rl}
|I I I| \leq c & {[} \\
& \int_{|x| \leq R_{i}^{-2}}|x|^{-\frac{n+2}{2}} d x+\int_{R_{i}^{-2} \leq|x| \leq R_{i}^{-1}} R_{i}^{-n-2}|x|^{-n-2} d x \\
& +\int_{R_{i}^{-1} \leq|x| \leq L_{i, j}^{*}} \frac{1}{(1+|x|)^{5}}\left(R_{i}^{-2 n+4}|x|^{-2 n+4}+L_{i, j}^{-2 n+4}\right) d x \\
& \left.+\int_{L_{i, j}^{*} \leq|x| \leq l_{i}} \frac{L_{i, j}^{-n-2}}{(1+|x|)^{n-1}} d x\right] \\
\leq c & c\left[R_{i}^{-n+2}+R_{i}^{-n-2} R_{i}^{4}\right. \\
& +\left(R _ { i } ^ { - 2 n + 4 } \left\{\begin{array}{cc}
R_{i}^{n-4}, & n>4 \\
\log R_{i}, & n=4
\end{array}+L_{i, j}^{-2 n+4}\left\{\begin{array}{cc}
1, & n<5 \\
\log L_{i, j}, & n=5 \\
L_{i, j}^{n-5}, & n>5
\end{array}\right)\right.\right. \\
& \left.+L_{i, j}^{-n-2} M_{i, j}^{\frac{2}{n-2}}\right],
\end{array}
$$

and

$$
\begin{aligned}
\left|I I I^{a}\right| \leq c & {[} \\
& +\int_{|x| \leq R_{i}^{-2}}|x|^{-\frac{n+2}{2}} d x+\int_{R_{i}^{-2} \leq|x| \leq R_{i}^{-1}} R_{i}^{-n-2}|x| \leq L_{i, j}^{*} \frac{1}{(1+|x|)^{4}}\left(R_{i}^{-2 n+4}|x|^{-2 n+4}+L_{i, j}^{-2 n+4}\right) d x \\
& \left.+\int_{L_{k, i}^{*} \leq|x| \leq l_{i}} \frac{L_{i, j}^{-n-2}}{(1+|x|)^{n-2}} d x\right] \\
\leq & c\left[R_{i}^{-n+2}+R_{i}^{-n-2} R_{i}^{4}\right. \\
& +\left(R _ { i } ^ { - 2 n + 4 } \left\{\begin{array}{cc}
R_{i}^{n-4}, & n>4 \\
\log R_{i}, & n=4
\end{array}+L_{i, j}^{-2 n+4}\left\{\begin{array}{cc}
\log L_{i, j}, & n=4 \\
L_{i, j}^{n-4}, & n>4
\end{array}\right)\right.\right. \\
+ & \left.L_{i, j}^{-n-2} M_{i, j}^{\frac{2}{n-2}}\right] .
\end{aligned}
$$

Since $R_{i}=L_{i, j} L_{i, j}^{\frac{2 \beta_{j}}{n-2} /\left(1-\frac{2 \beta_{j}}{n-2}\right)} \geq L_{i, j} L_{i, j}^{\frac{2 \beta_{j}}{n-2}}, L_{i, j}^{-n+2} \sim t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}$ and $L_{i, j}^{-1}=$ $o\left(M_{i, j}^{-\frac{1}{n-2}}\right)$, we have

$$
R_{i}^{-n+2} \leq L_{i, j}^{-n+2} L_{i, j}^{-2 \beta_{j}}=o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2 \beta_{j}}{n-2}}\right), \quad \text { and }
$$

$$
\begin{aligned}
& R_{i}^{-2 n+4} \max \left(R_{i}^{n-4}, \log R_{i}\right) \leq R_{i}^{-n+2}=o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2}{n-2}}\right), \\
& L_{i, j}^{-2 n+4}\left\{\begin{array} { c c }
{ 1 , } & { n < 5 } \\
{ \operatorname { l o g } L _ { i , j } , } & { n = 5 \leq L _ { i , j } ^ { - n + 2 } \{ \begin{array} { c c }
{ L _ { i , j } ^ { - n + 2 } , } & { n < 5 } \\
{ L _ { i , j } ^ { - 3 } \operatorname { l o g } L _ { i , j } , } & { n = 5 } \\
{ L _ { i , j } ^ { - 3 } , } & { n > 5 , }
\end{array} } \\
{ L _ { i , j } ^ { - 2 n + 4 } , } & { n > 5 }
\end{array} \left\{\begin{array}{cc}
\log L_{i, j}, & n=4 \\
L_{i, j}^{n-4}, & n>4
\end{array} \leq L_{i, j}^{-n+2}\left\{\begin{array}{cc}
L_{i, j}^{-2} \log L_{i, j}, & n=4 \\
L_{i, j}^{-2}, & n>4,
\end{array}\right.\right.\right. \\
& L_{i, j}^{-n-2} M_{i, j}^{\frac{2}{n-2} \leq L_{i, j}^{-n+2} o(1) M_{i, j}^{-\frac{4}{n-2}} M_{i, j}^{\frac{2}{n-2} .} .}
\end{aligned}
$$

Putting these estimates together, we have by $L_{i, j}^{-n+2} \sim t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}$ and $L_{i, j}^{-1}=o\left(M_{i, j}^{-\frac{1}{n-2}}\right)$,

$$
\begin{equation*}
|I I I|=o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}-\frac{2}{n-2}}\right), \text { and }\left|I I I^{a}\right|=o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right) \tag{7.30}
\end{equation*}
$$

From (7.26) ~ (7.30), we obtain (7.24) and (7.25) for Case (II) also.
By Lemma 6.1, after passing to a subsequence of $\left\{u_{i}\right\}, M_{i, 1} u_{i}$ converges to $h=\sum_{j=1}^{l} \frac{\mu_{j}}{\left|x-q_{j}\right|^{n-2}}$. From integration by parts and the facts

$$
\begin{aligned}
& \triangle\left(\nabla U_{i}\right)+p K_{i}\left(q_{i, j}\right) U_{i}^{p-1} \nabla U_{i}=0 \\
& \triangle\left(\partial_{\lambda} U_{i}\right)+p K_{i}\left(q_{i, j}\right) U_{i}^{p-1} \partial_{\lambda} U_{i}=0
\end{aligned}
$$

the left hand sides of (7.24) and (7.25) are equal to

$$
\begin{equation*}
\int_{|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}}\left(\frac{\partial g_{i}}{\partial r} \nabla U_{i}-g_{i} \frac{\partial \nabla U_{i}}{\partial r}\right) d \sigma \tag{7.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}}\left(\frac{\partial g_{i}}{\partial r} \partial_{\lambda} U_{i}-g_{i} \frac{\partial\left(\partial_{\lambda} U_{i}\right)}{\partial r}\right) d \sigma, \tag{7.32}
\end{equation*}
$$

respectively.
For $1 \leq j \leq l$, since q_{j} is a simple-like blowing-up point, we have

$$
\begin{equation*}
m_{i} \sim M_{i, j}^{-1} . \tag{7.33}
\end{equation*}
$$

When $j \geq l+1, L_{i, j} M_{i, j}^{-\frac{2}{n-2}} \rightarrow 0$ as $i \rightarrow \infty$. Thus,

$$
\begin{equation*}
M_{i, 1}^{-1} \gg M_{i, j}^{-1} . \tag{7.34}
\end{equation*}
$$

Now assume $j \geq l+1$. On $\left\{x:|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}\right\}$,

$$
g_{i}=\widetilde{u}_{i}+O\left(M_{i, j}^{-2}\right) \text { and } \nabla g_{i}=\nabla \widetilde{u}_{i}+O\left(M_{i, j}^{-2-\frac{2}{n-2}}\right) .
$$

By (7.34), we have on $\left\{x:|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}\right\}$,

$$
\begin{aligned}
g_{i}(x) & =(1+o(1)) M_{1, i}^{-1} M_{i, j}^{-1} h\left(q_{j}+M_{i, j}^{-\frac{2}{n-2}} x\right), \\
\nabla_{x} g_{i}(x) & =(1+o(1)) M_{i, 1}^{-1} M_{i, j}^{-1-\frac{2}{n-2}} \nabla_{y} h\left(q_{j}+M_{i, j}^{-\frac{2}{n-2}} x\right),
\end{aligned}
$$

where $y=q_{j}+M_{i, j}^{-\frac{2}{n-2}} x$. We have

$$
\begin{aligned}
& \int_{|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}} \frac{\partial g_{i}}{\partial r} \nabla U_{i} \\
& \quad=-\left(1+o(1)+c_{1}\left(\delta_{0}\right)\right) \frac{n-2}{n}\left|S^{n-1}\right| \nabla_{y} h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1-\frac{2}{n-2}}, \\
& -\int_{|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}} g_{i} \frac{\partial \nabla U_{i}}{\partial r}=-\left(1+o(1)+c_{2}\left(\delta_{0}\right)\right) \\
& \quad \times \frac{(n-1)(n-2)}{n}\left|S^{n-1}\right| \nabla_{y} h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1-\frac{2}{n-2}}, \\
& \int_{|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}} \frac{\partial g_{i}}{\partial r} \partial_{\lambda} U_{i} \\
& =-\left(o(1)+c_{3}\left(\delta_{0}\right)\right) \frac{n-2}{n}\left|S^{n-1}\right| \nabla_{y} h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1}, \\
& -\int_{|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}} g_{i} \frac{\partial \partial_{\lambda} U_{i}}{\partial r} \\
& \quad=-\left(1+o(1)+c_{4}\left(\delta_{0}\right)\right) \frac{(n-2)^{2}}{2}\left|S^{n-1}\right| \nabla_{y} h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1},
\end{aligned}
$$

where $c_{j}\left(\delta_{0}\right) \rightarrow 0$ as $\delta_{0} \rightarrow 0$. Hence as $i \rightarrow \infty$

$$
\begin{align*}
& -\int_{|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}}\left(\frac{\partial g_{i}}{\partial r} \nabla U_{i}-g_{i} \frac{\partial \nabla U_{i}}{\partial r}\right) d \sigma \tag{7.35}\\
& \quad=-\left(1+o(1)+c\left(\delta_{0}\right)\right)(n-2)\left|S^{n-1}\right| \nabla_{y} h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1-\frac{2}{n-2}},
\end{align*}
$$

and

$$
\begin{align*}
& \int_{|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}}\left(\frac{\partial g_{i}}{\partial r} \partial_{\lambda} U_{i, \lambda}-g_{i} \frac{\partial \partial_{\lambda} U_{i, \lambda}}{\partial r}\right) d \sigma \tag{7.36}\\
& \quad=-\left(1+o(1)+\widetilde{c}\left(\delta_{0}\right)\right) \frac{(n-2)^{2}}{2}\left|S^{n-1}\right| h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1}
\end{align*}
$$

where $c\left(\delta_{0}\right), \widetilde{c}\left(\delta_{0}\right) \rightarrow 0$ as $\delta_{0} \rightarrow 0$. Now from (7.24), (7.25), (7.35) and (7.36), we obtain (7.1) and

$$
\begin{aligned}
& \frac{n-2}{2 n} \int_{\left|x-q_{i, j}\right| \leq \delta_{0}}\left\langle x-q_{i, j}, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
& \quad=-\left(1+o(1)+c_{2}\left(\delta_{0}\right)\right) \frac{(n-2)^{2}}{2}\left|S^{n-1}\right| h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1} \\
& \quad+o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)+O\left(\delta_{0}^{n-1} t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}\right) .
\end{aligned}
$$

By (7.1) and the fact $M_{i, j}\left|q_{j}-q_{i, j}\right|^{\frac{n-2}{2}}$ is bounded,

$$
\begin{aligned}
& \int_{\left|x-q_{j}\right| \leq \delta_{0}}\left\langle x-q_{j}, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
&= \int_{\left|x-q_{j}\right| \leq \delta_{0}}\left\langle x-q_{i, j}, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
&+\int_{\left|x-q_{j}\right| \leq \delta_{0}}\left\langle q_{i, j}-q_{j}, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
&= \int_{\left|x-q_{i, j}\right| \leq \delta_{0}}\left\langle x-q_{i, j}, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
&+o(1) M_{i, 1}^{-1} M_{i, j}^{-1}+o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)+o\left(\delta_{0}^{n-1} t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}\right) .
\end{aligned}
$$

We obtain (7.2).
When $l \geq 2$ and $1 \leq j \leq l$, after passing to a subsequence of $\left\{u_{i}\right\}$, we have $\infty>\lim L_{i, j} M_{i, j}^{-\frac{2}{n-2}}=c>0$. Therefore on $\left\{x:|x|=\delta_{0} M_{i, j}^{\frac{2}{n-2}}\right\}$, we have

$$
\begin{aligned}
& g_{i}(x) \sim U_{i}(x), \\
& g_{i}(x)=(1+o(1))\left[M_{i, 1}^{-1} M_{i, j}^{-1} h\left(q_{j}+M_{i, j}^{-\frac{2}{n-2}} x\right)-\frac{1}{|x|^{n-2}}\right], \\
& \nabla_{x} g_{i}(x)=(1+o(1))\left[M_{1, i}^{-1} M_{i, j}^{-1} \nabla_{y} h\left(q_{j}+M_{i, j}^{-\frac{2}{n-2}} x\right)+\frac{(n-2) x}{|x|^{n}}\right],
\end{aligned}
$$

From these estimates, we obtain

$$
\begin{align*}
\int_{|x|=} & \delta_{0} M_{i, j}^{\frac{2}{n-2}}\left(\frac{\partial g_{i}}{\partial r} \nabla U_{i}-g_{i} \frac{\partial \nabla U_{i}}{\partial r}\right) d \sigma \tag{7.37}\\
& =-\left(1+o(1)+c\left(\delta_{0}\right)\right)(n-2)\left|S^{n-1}\right| \nabla_{y} h_{j}\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1-\frac{2}{n-2}}
\end{align*}
$$

and

$$
\begin{align*}
\int_{|x|=} & \delta_{0} M_{i, j}^{\frac{2}{n-2}}\left(\frac{\partial g_{i}}{\partial r} \partial_{\lambda} U_{i, \lambda}-g_{i} \frac{\partial \partial_{\lambda} U_{i, \lambda}}{\partial r}\right) d \sigma \tag{7.39}\\
& =-\left(1+o(1)+\widetilde{c}\left(\delta_{0}\right)\right) \frac{(n-2)^{2}}{2}\left|S^{n-1}\right| h_{j}\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1}
\end{align*}
$$

where $h_{j}=h-\frac{\mu_{j}}{\left|x-q_{j}\right|^{n-2}}, c\left(\delta_{0}\right), \widetilde{c}\left(\delta_{0}\right) \rightarrow 0$ as $\delta_{0} \rightarrow 0$. Putting these estimates into (7.24) and (7.25), we obtain (7.3) and (7.4). q.e.d.

8. Isolated blowing up

Proof of Theorem 1.3. Suppose that there exists a blowup point q which is not isolated. Then by Theorem 2.1, Corollary 2.3, Theorem 2.4, Theorem 2.5 and (6.8), q is the only simple-like blowup point. Thus $l=1, q=q_{1}$ and $\beta_{1}<\frac{n-2}{2}$. By (ii) of Theorem 2.5,

$$
\begin{equation*}
u_{i}(x) \leq c\left|x-q_{1}\right|^{-\frac{n-2}{2}} \tag{8.1}
\end{equation*}
$$

for $x \in B_{i}=\left\{x| | x-q_{1}|\leq \delta| q_{1}-q_{i, 1} \mid\right\}$, where c is independent of δ if $\delta \leq \frac{1}{2}$, and

$$
\begin{equation*}
u_{i}(x) \leq c_{1} U_{\lambda_{i}}\left(x-q_{i, 1}\right) \tag{8.2}
\end{equation*}
$$

for $x \notin B_{i}$, where $\lambda_{i}=u_{i}\left(q_{i, 1}\right)^{-\frac{2}{n-2}}$ and $c_{1}=c_{1}(\delta)$.
In particular, we have

$$
\begin{equation*}
m_{i} \sim M_{i, 1}^{-1}=u_{i}\left(q_{i, 1}\right)^{-1} \tag{8.3}
\end{equation*}
$$

Now, let $\left\{q_{j}\right\}_{j=2}^{m}$ be the other blowup points, and $\Omega_{i}=\bigcup_{j=1}^{m} B\left(q_{j}, \delta_{0}\right)$.
Then, (8.3) implies

$$
u_{i}(x) \leq c M_{i, 1}^{-1}(1+|x|)^{2-n}
$$

for $x \notin \Omega_{i}$. By the Pohozaev identity,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x=0, \quad \text { and } \tag{8.4}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left\langle e_{i}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x=0 \tag{8.5}
\end{equation*}
$$

where $e_{i}=\frac{\nabla \hat{K}\left(q_{i, 1}\right)}{\left|\nabla \hat{K}\left(q_{i, 1}\right)\right|}$. By (8.1) and (8.2), we have

$$
\begin{align*}
& \left|\int_{\left|x-q_{1}\right| \leq \delta_{0}}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \\
& \leq c t_{i}\{ \tag{8.6}\\
& \quad\left\{\int_{B_{i}}\left|x-q_{1}\right|^{\beta_{1}-n} d x\right. \\
& \left.\quad+\int_{B\left(q_{1}, \delta_{0}\right) \backslash B_{i}}\left|x-q_{1}\right|^{\beta_{1}} U_{\lambda_{i}}^{\frac{2 n}{n-2}}\left(x-q_{i, 1}\right) d x\right\} \\
& \leq c t_{i}\left|q_{i, 1}-q_{1}\right|^{\beta_{1}},
\end{align*}
$$

where $\lim _{i \rightarrow+\infty}\left(u\left(q_{i, 1}\right)\left|q_{i, 1}-q_{1}\right|^{\frac{n-2}{2}}\right)=+\infty$ is used. As in (4.29), we can obtain the lower bound

$$
\begin{equation*}
\int_{B\left(q_{1}, \delta_{0}\right)}\left\langle e_{i}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \geq c_{2} t_{i}\left|q_{i, 1}-q_{1}\right|^{\beta_{1}-1} \tag{8.7}
\end{equation*}
$$

provided that δ is small enought.
On the other hand, we have

$$
\begin{align*}
& \left|\int_{\mathbb{R}^{n} \backslash \Omega_{i}}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right|=O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}, \tag{8.8}\\
& \left|\int_{\mathbb{R}^{n} \backslash \Omega_{i}}\left\langle e_{i}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right|=O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}, \tag{8.9}
\end{align*}
$$

and by (7.2) of Lemma 7.1,

$$
\begin{align*}
-\sum_{j=2}^{m} & \int_{B\left(q_{j}, \delta_{0}\right)}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \tag{8.10}\\
= & \sum_{j=2}^{m}\left[-\int_{B\left(q_{j}, \delta_{0}\right)}\left\langle q_{j}-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right. \\
& \left.-\int_{B\left(q_{j}, \delta_{0}\right)}\left\langle x-q_{j}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right] \\
= & (1+\epsilon)(n-2)\left|S^{n-1}\right| \sum_{j=2}^{m}\left(\left\langle q_{j}-q_{1}, \nabla h\left(q_{j}\right)\right\rangle\right. \\
& \left.+\frac{n-2}{2} h\left(q_{j}\right)\right) \cdot M_{i, 1}^{-1} M_{i, j}^{-1}+O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}, \\
= & -(1+\epsilon) \frac{(n-2)^{2}}{2}\left|S^{n-1}\right| \sum_{j=2}^{m} h\left(q_{j}\right) M_{i, 1}^{-1} M_{i, j}^{-1}+O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}
\end{align*}
$$

with some small ϵ. By (7.3) and (8.10),

$$
\begin{align*}
& \sum_{j=2}^{m}\left|\int_{B\left(q_{j}, \delta_{0}\right)}\left\langle e_{i}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \\
& \quad \leq c \sum_{j=2}^{m} M_{i, 1}^{-1} M_{i, j}^{-1}+O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} \tag{8.11}\\
& \quad \leq c_{1} \sum_{j=2}^{m} \int_{B\left(q_{j}, \delta_{0}\right)}\left\langle x-q_{1}, \nabla K_{i}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
& \quad+O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} .
\end{align*}
$$

Note that $h(x)=\frac{\mu_{1}}{\left|x-q_{1}\right|^{n-2}}$. Hence, we can use the following identity in (8.10)

$$
\begin{equation*}
\left\langle q_{j}-q_{1}, \nabla h\left(q_{j}\right)\right\rangle=-(n-2) h\left(q_{j}\right) \tag{8.12}
\end{equation*}
$$

By (8.5) ~ (8.11), we have

$$
\begin{aligned}
& c_{3} t_{i}\left|q_{i, 1}-q_{1}\right|^{\beta_{1}-1} \\
& \leq \int_{B\left(q_{1}, \delta_{0}\right)}\left\langle e_{i}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
& \leq c \sum_{j=2}^{m} M_{i, 1}^{-1} M_{i, j}^{-1}+O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} \\
& \leq c_{1}\left|\int_{\mathbb{R}^{n} \backslash B\left(q_{1}, \delta_{0}\right)}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \\
&+O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} \\
&= c_{1}\left|\int_{B\left(q_{1}, \delta_{0}\right)}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \\
&+O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} \\
& \leq c_{2}\left\{t_{i}\left|q_{i, 1}-q_{1}\right|^{\beta_{1}}+t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|q_{i, 1}-q_{1}\right|^{\beta_{1}-1} \leq c M_{i, 1}^{-\frac{2 n}{n-2}} . \tag{8.14}
\end{equation*}
$$

Recall that $\beta_{1}<\frac{n-2}{2}$. Then (8.14) yields a contradiction to the assumption that $\lim _{i \rightarrow+\infty}\left(\left|q_{i, 1}-q_{1}\right| M_{i, 1}^{\frac{2}{n-2}}\right)=+\infty$. We have proved that every blowup point must be isolated.

To prove the second part, let us assume that q_{j} is a blowup point with $\beta_{j}<n+1$ and $\lim _{i \rightarrow+\infty} \sup _{B\left(q_{j}, \delta_{0}\right)}\left(u_{i}(x)\left|x-q_{j}\right|^{\frac{n-2}{2}}\right)=+\infty$. Since (ii) of Theorem 2.5 is excluded, q_{j} must be a simple blowup point. Thus, u_{i} lose the energy of only one bubble at q_{j} and then, $q_{i, j}$ is the local maximum point defined by (6.1). By the assumptions, we have

$$
\begin{gather*}
\lim _{i \rightarrow+\infty}\left(\left|q_{i, j}-q_{j}\right| M_{i, j}^{\frac{2}{n-2}}\right)=+\infty \text { and } \tag{8.15}\\
u_{i}(x) \leq c U_{\lambda_{i}}\left(x-q_{i, j}\right) \text { for }\left|x-q_{j}\right| \leq \delta_{0}, \tag{8.16}
\end{gather*}
$$

where $\lambda_{i}=M_{i, j}^{-\frac{2}{n-2}}$. Applying Theorem 2.2, (8.14) implies

$$
\lim _{i \rightarrow+\infty} L_{i, j} M_{i, j}^{-\frac{2}{n-2}}=+\infty
$$

Hence q_{j} is the only simple-like blowup point. By repeating the same argument as above, we can reach the same conclusion as (8.14), that is,

$$
\left|q_{i, j}-q_{j}\right|^{\beta_{j}-1} \leq c M_{i, j}^{-\frac{2 n}{n-2}}
$$

for some constant $c>0$. Since $\beta_{j}<n+1$, the inequality yields a contradiction to (8.15). Hence (1.20) is proved. q.e.d.

Set $q_{i, j}$ to be the local maximum point of u_{i} defined by (1.21) and $\xi_{i}=M_{i, j}^{\frac{2}{n-2}}\left(q_{i, j}-q_{j}\right)$. Let ξ be any limit of ξ_{i}. Then we claim:

Lemma 8.1. ξ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q_{j}(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y=0 \tag{8.17}
\end{equation*}
$$

Proof. If $L_{i}\left(q_{i, j}\right) M_{i, j}^{-\frac{2}{n-2}}$ is bounded where $M_{i, j}=u_{i}\left(q_{i, j}\right)$, then (8.17) is proved by Theorem 2.2. So, we may assume

$$
\lim _{i \rightarrow+\infty} L_{i}\left(q_{i, j}\right) M_{i, j}^{-\frac{2}{n-2}}=+\infty
$$

Thus, q_{j} is the only simple-like blowup points. Hence Lemma 7.1 can be applied to all blowup point $q_{k}, k \neq j$. For the simplicity, we assume $j=1$. By using (7.2) of Lemma 7.1, (8.4), (8.5), (8.10) and (8.11), we have the same conclusion as (8.13), i.e.,

$$
\left.\begin{array}{l}
\left|\int_{B\left(q_{1}, \delta_{0}\right)} \nabla K_{i}(x) u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \\
\leq c_{1}\left|\int_{B\left(q_{1}, \delta_{0}\right)}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \\
 \tag{8.18}\\
+O(1) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} \\
\leq c_{2} t_{i}\left\{\int_{B\left(q_{1}, \delta_{0}\right)}\left|x-q_{1}\right|^{\beta_{1}} u_{i}^{\frac{2 n}{n-2}}(x) d x+M_{i, 1}^{\frac{-2 n}{n-2}}\right\}
\end{array}\right\}
$$

where $\beta_{1}^{*}=\min \left(\beta_{1}, n\right)$. On the other hand, by the scaling and (1.20), we have

$$
\begin{align*}
& \int_{B\left(q_{1}, \delta_{0}\right)} \nabla K_{i}(x) u_{i}^{\frac{2 n}{n-2}}(x) d x \\
& \quad=\left(\int_{\mathbb{R}^{n}} \nabla Q_{1}(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y+o(1)\right) t_{i} M_{i, 1}^{-\frac{2\left(\beta_{1}-1\right)}{n-2}} . \tag{8.19}
\end{align*}
$$

Since $\beta_{1}-1<n$, (8.17) follows from (8.18) and (8.19) readily. q.e.d.

9. Asymptotic behaviors of $M_{i, j}$

Proof of Theorem 1.4. We first prove (1.22). By (1.20) in Theorem 1.3, we only need to consider the case $\beta_{j} \geq n+1$. Suppose $\beta_{j} \geq n+1$ and (1.22) does not hold. Then we have $\left|q_{i, j}-q_{j}\right|^{\frac{n-2}{2}} M_{i, j} \rightarrow \infty$ as $i \rightarrow \infty$. By Theorem 2.2 and (6.7), $j=l=1$. Let $e_{i}=\frac{\nabla K_{i}\left(q_{i, 1}\right)}{\left|\nabla K_{i}\left(q_{i, 1}\right)\right|}$. By (7.1) and (7.2),

$$
\begin{aligned}
& \int_{\left|x-q_{1}\right| \leq \delta_{0}}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x \\
& \geq c_{1} \sum_{k=2}^{m}\left\{M_{i, 1}^{-1} M_{i, k}^{-1}+o\left(t_{i} M_{i, k}^{\frac{-2 \beta_{1}}{n-2}}\right)\right\} \\
& \quad+O\left(t_{i} M_{i, 1}^{\frac{-2 n}{n-2}}\right),
\end{aligned}
$$

for some $c_{1}>0$ and

$$
\begin{aligned}
& \int_{\left|x-q_{1}\right| \leq \delta_{0}}\left\langle e_{i}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x \\
& \quad=O\left(\sum_{j=2}^{s}\left\{M_{i, 1}^{-1} M_{i, j}^{-1}+o\left(t_{i} M_{i, k}^{\frac{-2 \beta_{1}}{n-2}}\right)\right\}\right)+O\left(t_{i} M_{i, 1}^{\frac{-2 n}{n-2}}\right)
\end{aligned}
$$

as $i \rightarrow \infty$. On the other hand,

$$
\begin{aligned}
& \int_{\left|x-q_{1}\right| \leq \delta_{0}}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x \\
& \quad \leq c t_{i}\left|q_{i, 1}-q_{1}\right|^{\beta_{1}}+c t_{i} M_{1, i}^{-\frac{2 n}{n-2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\left|x-q_{1}\right| \leq \delta_{0}}\left\langle e_{i}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x \\
& \quad \geq c t_{i}\left|q_{i, 1}-q_{1}\right|^{\beta_{1}-1}-c_{1}\left\{\begin{array}{cc}
t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}\left(-\log \left|q_{i, 1}-q_{1}\right|\right) & \beta_{1}=n+1 \\
t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} & \beta_{1}>n+1
\end{array}\right. \\
& \quad \geq c t_{i}\left|q_{i, 1}-q_{1}\right|^{\beta_{1}-1}-c_{1}\left\{\begin{array}{cc}
t_{i} M_{i, 1}^{-\frac{2 n}{n-2}\left(\log M_{i, 1}\right)} & \beta_{1}=n+1 \\
t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} & \beta_{1}>n+1
\end{array}\right.
\end{aligned}
$$

for some $c>0$ and $c_{1}>0$. Putting the estimates above together, we obtain

$$
\left|q_{i, 1}-q_{1}\right|^{\beta_{1}-1} \leq c\left|q_{i, 1}-q_{1}\right|^{\beta_{1}}+c\left\{\begin{array}{cc}
t_{i} M_{i, 1}^{-\frac{2\left(\beta_{1}-1\right)}{n-2}}\left(\log M_{1, i}\right) & \beta_{1}=n+1 \\
t_{i} M_{1, i}^{-\frac{2 n}{n-2}} & \beta_{1}>n+1
\end{array}\right.
$$

Since $\left|q_{i, 1}-q_{1}\right| \rightarrow 0$ as $i \rightarrow \infty$, we conclude

$$
\begin{array}{cl}
\left|q_{i, 1}-q_{1}\right|=O\left(M_{i, 1}^{-\frac{2}{n-2}}\left(\log M_{i, 1}\right)^{\frac{1}{n}}\right) & \text { for } \beta_{1}=n+1 \\
\left|q_{i, 1}-q_{1}\right|=O\left(M_{i, 1}^{-\frac{2}{n-2} \frac{n}{\beta_{1}-1}}\right) & \text { for } \beta_{1}>n+1
\end{array}
$$

From these, we conclude that (1.22) holds.
Now we prove $m \geq 2$. Suppose $m=1$. Then $q=q_{1}$ is the only blowup point and it must be simple. If $\beta_{1}<n$, then by Theorem 1.3,

$$
\begin{equation*}
\left|q_{i, 1}-q_{1}\right| \leq c M_{i, 1}^{-\frac{2}{n-2}} \tag{9.1}
\end{equation*}
$$

By the Pohozaev identity,

$$
\begin{align*}
& \left|\int_{\left|x-q_{1}\right| \leq \delta_{0}}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \\
& \quad=\left|\int_{\left|x-q_{1}\right|>\delta_{0}}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \tag{9.2}\\
& \quad \leq c_{1} t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}
\end{align*}
$$

By scaling and (9.1), it is not difficult to see that the left hand side of
(9.2) is

$$
\begin{aligned}
& \left|\int_{\left|x-q_{1}\right| \leq \delta_{0}}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x\right| \\
& \quad=t_{i} M_{i, 1}^{-\frac{2 \beta_{1}}{n-2}}\left|\int_{\mathbb{R}^{n}} Q(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y\right| \\
& \quad \geq c_{1} t_{i} M_{i, 1}^{-\frac{2 \beta_{1}}{n-2}} .
\end{aligned}
$$

for some $c_{2}>0$, where $\xi=\lim _{i \rightarrow+\infty} M_{i, 1}^{\frac{2}{n-2}}\left(q_{i, 1}-q_{1}\right)$. Thus, it yields a contradiction to $\beta_{1}<n$.

If $\beta_{1}=n$, the left hand side of (9.2) is greater than $c_{1} M_{i, 1}^{-\frac{2 \beta_{1}}{n-2}} \log M_{i, 1}$ for some $c_{1}>0$, which also yields a contradiction. Now we assume $\beta_{1}>n$. The Pohozaev identity gives

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left\langle x-q_{1}, \nabla \hat{K}(x)\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x=0 . \tag{9.3}
\end{equation*}
$$

Since $M_{i, 1} u_{i}(x) \rightarrow \frac{\mu_{1}}{\left|x-q_{1}\right|^{n-2}}$ for some $\mu_{1}>0$ and

$$
M_{i, 1} u_{i}(x) \leq \frac{c}{\left|x-q_{i, 1}\right|^{n-2}}
$$

for some constant $c>0$, by multipling both sides of (9.3) by $M_{i, 1}^{\frac{2 n}{n-2}}$ and using (1.22), we obtain

$$
\int_{\mathbb{R}^{n}}\left\langle x-q_{1}, \nabla \hat{K}(x)\right\rangle\left|x-q_{1}\right|^{-2 n} d x=0,
$$

a contradiction to our assumptions. Hence $m \geq 2$ is proved. Let $\left\{q_{1}, \ldots, q_{l}, q_{l+1}, \ldots, q_{m}\right\}$ be indexed by the ordering $\beta_{1}=\ldots=\beta_{l}>$ $\beta_{l+1}=\ldots=\beta_{l_{1}}>\beta_{l_{1}+1} \geq \ldots \geq \beta_{m}$ as in Lemma 6.2. To find the asymptotic behavior of $M_{i, j}$, we consider the case $l=1$ first. Let $h_{i}(x)=M_{i, 1} u_{i}(x)$. Then $h_{i}(x)$ converges to $\mu_{1}\left|x-q_{1}\right|^{2-n}$ for some $\mu_{1}>0$ by Lemma 6.1. To compute μ_{1}, we use

$$
\begin{align*}
\mu_{1}(n-2)\left|S^{n-1}\right| & =\lim _{i \rightarrow+\infty}\left(-\int_{\left|x-q_{1}\right|=\delta_{0}} \frac{\partial h_{i}}{\partial \nu} d \sigma\right) \\
& =\lim _{i \rightarrow+\infty} M_{i, 1} \int_{\left|x-q_{1}\right| \leq \delta_{0}} K_{i}(x) u_{i}^{\frac{n+2}{n-2}}(x) d x \tag{9.4}\\
& =n(n-2) \int_{\mathbb{R}^{n}} U_{1}^{\frac{n+2}{n-2}}(y) d y=(n-2)\left|S^{n-1}\right| .
\end{align*}
$$

From (9.4), $\mu_{1}=1$, that is,

$$
\begin{equation*}
h(x)=\frac{1}{\left|x-q_{1}\right|^{n-2}} . \tag{9.5}
\end{equation*}
$$

In (7.2), since after passing to a subsequence, the left hand side is of order $O\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)$, we may drop the term $o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)$ in the right hand side. Let $\Omega=\cup_{j=1}^{m} B\left(q_{j}, \delta_{0}\right)$. When $\beta_{1}<n$, together with (7.1) and (7.2), the Pohozave identity implies

$$
\begin{align*}
& \frac{n-2}{2 n} \int_{B\left(q_{1}, \delta_{0}\right)}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
& =-\sum_{j=2}^{m} \frac{n-2}{2 n}\left(\int_{B\left(q_{j}, \delta_{0}\right)}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x\right. \\
& \left.\quad \quad+\int_{\mathbb{R}^{n} \backslash \Omega}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x\right) \tag{9.6}\\
& =-\left(1+o(1)+c_{1}\left(d_{0}\right)\right) \frac{(n-2)^{2}}{2}\left|S^{n-1}\right| \\
& \quad \sum_{j=2}^{m}\left(\left|q_{1}-q_{j}\right|^{2-n} M_{i, 1}^{-1} M_{i, j}^{-1}+o\left(t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\right)\right) \\
& \quad+O\left(t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}\right),
\end{align*}
$$

where (9.5) is used. On the other hand, the left hand side of (9.6) is equal to

$$
\beta_{1}\left(\frac{n-2}{2 n}\right) t_{i} M_{i, 1}^{-\frac{2 \beta_{1}}{n-2}}\left(\int_{\mathbb{R}^{n}} Q_{1}(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y\right)(1+o(1)) .
$$

Thus, we have

$$
\begin{equation*}
t_{i} M_{i, 1}^{-\frac{2 \beta_{1}}{n-2}}=\sum_{j=2}^{l_{1}} \eta_{1, j} M_{i, 1}^{-1} M_{i, j}^{-1}(1+o(1)), \tag{9.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{1, j}=\frac{n(n-2)\left|S^{n-1}\right|\left|q_{1}-q_{j}\right|^{-n+2}}{\beta_{1}\left|\int Q(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y\right|} . \tag{9.8}
\end{equation*}
$$

When $\beta_{1}=n$, we have

$$
t_{i} M_{i, 1}^{-\frac{2 n}{n-2}} \log M_{i, 1}=\sum_{j=2}^{l_{1}} \eta_{1, j} M_{i, 1}^{-1} M_{i, j}^{-1},
$$

where

$$
\begin{equation*}
\eta_{1, j}=\frac{(n-2)\left|S^{n-1}\right|\left|q_{1}-q_{j}\right|^{-n+2}}{\left|\int_{S^{n-1}} Q(y) d \sigma\right|} \tag{9.9}
\end{equation*}
$$

by noting that the left hand side of (9.6) will give

$$
n\left(\frac{n-2}{2 n}\right) t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}\left(\int_{S^{n-1}} Q(y) d \sigma\right) \log M_{i, 1}(1+o(1)) .
$$

When $\beta_{1}>n$, we have

$$
\begin{gathered}
\lim _{i \rightarrow+\infty}\left(M_{i, 1}^{\frac{2 n}{n-2}} \int_{\mathbb{R}^{n} \backslash \cup_{j=2}^{m} B\left(q_{j}, \delta\right)}\left\langle x-q_{1}, \nabla \hat{K}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x\right) \\
\quad=\int_{\mathbb{R}^{n} \backslash \cup_{j=2}^{m} B\left(q_{j}, \delta\right)}\left\langle x-q_{1}, \nabla \hat{K}\right\rangle\left|x-q_{1}\right|^{-2 n} d x
\end{gathered}
$$

for any $\delta>0$. By letting $\delta \rightarrow 0$, we have

$$
t_{i} M_{i, 1}^{-\frac{2 n}{n-2}}=(1+o(1)) \sum_{j=1}^{l_{1}} \eta_{1, j} M_{i, 1}^{-1} M_{i, j}^{-1},
$$

where

$$
\begin{equation*}
\eta_{1, j}=\frac{n(n-2)\left|S^{n-1}\right|\left|q_{1}-q_{j}\right|^{-n+2}}{\left|\int_{\mathbb{R}^{n}}\left\langle x-q_{1}, \nabla \hat{K}\right\rangle\right| x-\left.q_{1}\right|^{-2 n} d x \mid} . \tag{9.10}
\end{equation*}
$$

Thus, (1.24) is proved.
To prove (1.25), we note $\beta_{j}<n-2$ for $j \geq 2$. By (1.24), $t M_{1, i}^{-\frac{2 n}{n-2}}=$ $O\left(M_{i, 1}^{-1} M_{i, j}^{-1}\right)$. Hence if we let d tend to 0 suitably, (7.2) implies

$$
\begin{aligned}
& \beta_{j} \frac{n-2}{2 n} t_{i} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}}\left|\int_{\mathbb{R}^{n}} Q_{j}(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y\right| \\
& \quad=(1+o(1)) \frac{n-2}{2 n} \int_{B\left(q_{j}, \delta\right)}\left\langle x-q_{1}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}} d x \\
& \quad=(1+o(1)) \frac{(n-2)^{2}}{2}\left|S^{n-1}\right|\left|q_{1}-q_{j}\right|^{-n+2} M_{i, 1}^{-1} M_{i, j}^{-1}
\end{aligned}
$$

which is (1.25).
To prove (1.28), it is enough to prove (1.28) for $j=1$. As the proof of (9.5), we have

$$
\begin{equation*}
h(x)=\sum_{k=1}^{l} \frac{\mu_{k}}{\left|x-q_{k}\right|^{n-2}} \tag{9.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{1}=1 \tag{9.12}
\end{equation*}
$$

Since $M_{i, k} u_{i}(x)$ also converges to $\widetilde{h}(x)$ where

$$
\widetilde{h}(x)=\frac{1}{\left|x-q_{k}\right|^{n-2}}+\sum_{j \neq k}^{l} \frac{\widetilde{\mu}_{j}}{\left|x-q_{j}\right|^{n-2}}
$$

we have

$$
\begin{equation*}
\mu_{k}=\lim _{i \rightarrow+\infty} \frac{M_{i, 1}}{M_{i, k}} \tag{9.13}
\end{equation*}
$$

Since $l \geq 2$, we recall that Theorem 2.2 and Lemma 6.2 imply $\beta_{j}<n-2$ for all j. By (7.4), we have for $j=1$

$$
\begin{aligned}
& \beta_{1} \frac{n-2}{2 n} t_{i} M_{i, 1}^{-\frac{2 \beta_{1}}{n-2}}\left(\int_{\mathbb{R}^{n}} Q_{1}(y+\xi) U_{1}^{\frac{2 n}{n-2}}(y) d y\right)(1+o(1)) \\
& =-\frac{(n-2)^{2}}{2}\left|S^{n-1}\right| h_{1}\left(q_{1}\right) M_{i, 1}^{-1} M_{i, 1}^{-1} \\
& =-\frac{(n-2)^{2}}{2}\left|S^{n-1}\right|\left(\sum_{j=2}^{l} \frac{\mu_{j}}{\left|q_{j}-q_{1}\right|^{n-2}} M_{i, 1}^{-1}\right) M_{i, 1}^{-1} \\
& \quad=-\frac{n-2}{2}\left|S^{n-1}\right| \sum_{j=2}^{l} \frac{1}{\left|q_{j}-q_{1}\right|^{n-2}} M_{i, 1}^{-1} M_{i, j}^{-1}
\end{aligned}
$$

where the last equality comes from (9.13). Clearly, (1.28) follows immediately. Identity (1.29) also follows from (7.2) and (9.13) immediately. Thus, the proof of Theorem 1.4 is complete. q.e.d.

10. Apriori estimates

In this final section, we are going to prove the apriori bound of Theorem 1.1. Here, we consider a sequence of blowing up solutions of

Equation (1.3) with $K=K_{i}$ more general than the one in previous sections. We assume that K_{i} converges to a function, say K, in C^{1}, and for simplicity, assume K_{i} has the same set of critical points $\left\{q_{1}, q_{2}, \ldots, q_{N}\right\}$. Let $Q_{i, j}(y)$ be the homogeneous function in (K0) for K_{i} at q_{j}. Assume that K satisfies $(\mathrm{K} 0) \sim(\mathrm{K} 1)$ and $Q_{i, j}(y) \rightarrow Q_{j}(y)$ in C^{1}. Let $\beta_{i, j}$ be the degree of $Q_{i, j}$ and

$$
\begin{equation*}
\beta_{j}=\lim _{i \rightarrow+\infty} \beta_{i, j}>\frac{n-2}{2} \tag{10.1}
\end{equation*}
$$

for all j such that $q_{j} \in \Gamma^{-}$, where Γ^{-}is defined in Section 1.
By results of [8], [9], it is known that any blowup point is isolated. Without loss of generality, the point $+\infty$ is assumed not to be a blowup point. Let $\left\{q_{1}, \ldots, q_{m}\right\}$ be the set of blowup points such that q_{1}, \ldots, q_{l} are all simple blowup points and q_{l+1}, \ldots, q_{m} are non-simple blowup points. Following the same proof of Lemma 6.1 and part (i) of Theorem 1.4, we have $l \geq 1$ and $m \geq 2$. Another important result in [8], [9] is that q_{j} is simple if and only if $\beta_{j} \geq n-2$. This result follows from Theorem 1.3 of [8], [9] when $\beta_{j} \neq n-2$. For the case $\beta_{j}=n-2$, it follows from the following lemma similar to Lemma 7.1.

Lemma 10.1. For $2 \leq j \leq m$ if $l=1$ and $1 \leq j \leq m$ if $l \geq 2$, we have

$$
\begin{gather*}
\frac{n-2}{2 n} \int_{\left|x-q_{j}\right| \leq \delta} \nabla K_{i}(x) u_{i}^{\frac{2 n}{n-2}}(x) d x \\
=-\left(1+o(1)+c_{1}(\delta)\right) \\
\cdot(n-2)\left|S^{n-1}\right|\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n-2}{2}} \tag{10.2}\\
\nabla \widetilde{h}_{j}\left(q_{j}\right) \hat{M}_{i, 1}^{-1} \hat{M}_{i, j}^{-1-\frac{2}{n-2}} \\
\frac{n-2}{2 n} \int_{\left|x-q_{j}\right| \leq \delta}\left\langle x-q_{j}, \nabla K_{i}\right\rangle u_{i}^{\frac{2 n}{n-2}}(x) d x \\
\left.=-\left(1+o(1)+\hat{M}_{2, j}^{-\frac{2 \beta_{i, j}}{n-2}}\right)+O(\delta)\right) \\
\left.\quad \cdot \frac{(n-2)^{n-1}}{2} \hat{M}_{i, 1}^{-\frac{2 n}{n-2}}\right) \\
\quad+o\left(S^{n-1} \left\lvert\,\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{-\frac{2 \beta_{i, j}}{n-2}}\right.\right)+O\left(\delta^{n-1} \hat{M}_{i, 1}^{-\frac{2 n}{n-2}}\right) \tag{10.3}
\end{gather*}
$$

where

$$
h(x)=\lim _{i \rightarrow+\infty} \hat{M}_{i, 1} u_{i}(x)=\sum_{j=1}^{l} \frac{\mu_{j}}{\left|x-q_{j}\right|^{n-2}}
$$

$\widetilde{h}_{j}(x)=h(x)$ if $j \geq l+1$, and

$$
\widetilde{h}_{j}(x)=h(x)-\frac{\mu_{j}}{\left|x-q_{j}\right|^{n-2}}
$$

if $1 \leq j \leq l$ and $l \geq 2$.

Here, $\hat{M}_{i, j}$ and $q_{i, j}$ are the local maximum and a local maximum point of u_{i} near q_{j} satisfying

$$
\begin{equation*}
\hat{M}_{i, j}=u_{i}\left(q_{i, j}\right)=\max _{\left|x-q_{j}\right| \leq \delta_{0}} u_{i}(x) \tag{10.4}
\end{equation*}
$$

We can prove Lemma 10.1 by the same argument as in Lemma 7.1, but the proof is simpler because $\beta_{j}>\frac{n-2}{2}$ for all j. The position $q_{i, j}$ also satisfies (1.22) for some constant $c>0$. When $\beta_{j} \leq n-2$, it was proved in [9]. When $\beta_{j}>n-2$, it is a consequence of Lemma 10.1, as shown in the previous sections.

Another important consequence of Lemma 10.1 is the asymptotic behavior of $\hat{M}_{i, j}$ which is similar to Theorem 1.4.

Theorem 10.2. Assume that K satisfies (K0) and (K1) and $\beta_{j}>$ $\frac{n-2}{2}$ for all $q_{j} \in \Gamma^{-}$. Let q_{1}, \ldots, q_{l} are simple blowup points and q_{l+1}, \ldots, q_{m} are not simple blowup points. Set

$$
M_{i, j}=\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n-2}{4}} \hat{M}_{i, j}
$$

where $\hat{M}_{i, j}$ is the local maximum in (10.4). Then $m \geq 2, l \geq 1, \beta_{1}=$ $\ldots=\beta_{l}>\beta_{j}$ for $j \geq l+1$, and the following hold:
(i) If $l=1$ and q_{j} is indexed by the ordering $\beta_{1}>\beta_{2}=\ldots=\beta_{l_{1}}>$
$\beta_{l_{1}+1} \geq \ldots \geq \beta_{m}$, then

$$
\left.\begin{array}{rl}
\left|b_{1}\right|\left(\frac{n(n-2)}{K\left(q_{1}\right)}\right)^{\frac{n}{2}} M_{i, 1}^{-\frac{2 \beta_{1}^{*}}{n-2}} & \text { if } \beta_{1} \neq n \\
\left(\frac{n(n-2)}{K\left(q_{1}\right)}\right)^{\frac{n}{2}} M_{i, 1}^{-\frac{2 \beta_{1}}{n-2}} \log M_{i, 1} & \text { if } \beta_{1}=n
\end{array}\right\}, \begin{aligned}
& =(1+o(1)) n(n-2)\left|S^{n-1}\right| \sum_{j=2}^{l_{1}}\left(\frac{n(n-2)}{K\left(q_{1}\right)}\right)^{\frac{n-2}{4}} \\
& \quad \cdot\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n-2}{4}}\left|q_{1}-q_{j}\right|^{-n+2} M_{i, 1}^{-1} M_{i, j}^{-1} \tag{10.6}
\end{aligned}
$$

and

$$
\begin{align*}
& \left|b_{j}\right|\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n}{2}} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} \\
& \quad=(1+o(1)) n(n-2)\left|S^{n-1}\right|\left(\frac{n(n-2)}{K\left(q_{1}\right)}\right)^{\frac{n-2}{4}} \tag{10.7}\\
& \\
& \quad \cdot\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n-2}{4}} M_{i, 1}^{-1} M_{i, j}^{-1}
\end{align*}
$$

for $2 \leq j \leq m$.
(ii) If $l \geq 2$, then $\beta_{1}=\ldots=\beta_{l}=n-2$,

$$
\begin{align*}
& \left|b_{j}\right|\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n}{2}} M_{i, j}^{-2} \\
& =(1+o(1)) n(n-2)\left|S^{n-1}\right| \sum_{k=1, k \neq j}^{l}\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n-2}{4}} \tag{10.8}\\
& \\
& \quad \cdot\left(\frac{n(n-2)}{K\left(q_{k}\right)}\right)^{\frac{n-2}{4}}\left|q_{j}-q_{k}\right|^{-n+2} M_{i, j}^{-1} M_{i, k}^{-1}
\end{align*}
$$

for $1 \leq j \leq l$ and,

$$
\begin{align*}
& \left|b_{j}\right|\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n}{2}} M_{i, j}^{-\frac{2 \beta_{j}}{n-2}} \\
& =n(n-2)\left|S^{n-1}\right|(1+o(1)) \sum_{k=1}^{l}\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n-2}{4}} \tag{10.9}\\
& \quad \cdot \frac{n(n-2)}{K\left(q_{k}\right)}\left|q_{j}-q_{k}\right|^{-n+2} M_{i, j}^{-1} M_{i, k}^{-1}
\end{align*}
$$

for $l+1 \leq j \leq m$ where b_{j} is given in (1.27).
Now we are in the position to prove the apriori bound of Theorem 1.1. In fact, we are going to prove the result for more general situations. Let $A=\left\{q_{k_{1}}, \ldots, q_{k_{m}}\right\}$ be a subset of Γ^{-}where $\beta_{k_{1}} \geq \beta_{k_{2}} \geq$ $\ldots \geq \beta_{k_{m}} . A$ is called admissible if $m \geq 2$ and one of the following conditions holds:
(i) $n \neq \beta_{k_{1}}>\beta_{k_{2}}$ and

$$
\begin{equation*}
\frac{1}{\beta_{k_{1}}^{*}}+\frac{1}{\beta_{k_{2}}^{*}}=\frac{2}{n-2} \tag{10.10}
\end{equation*}
$$

where $\beta_{j}^{*}=\min \left(\beta_{j}, n\right)$.
(ii) There exists an integer $l \geq 2$ such that

$$
\begin{equation*}
n-2=\beta_{k_{1}}=\beta_{k_{2}}=\ldots=\beta_{k_{l}}>\beta_{k_{l+1}} \geq \ldots \geq \beta_{m} \tag{10.11}
\end{equation*}
$$

For an admissible set A of case (i), for simplicity, assume it is $\left\{q_{1}, \ldots, q_{m}\right\}$ with $\beta_{1}>\beta_{2}=\ldots=\beta_{l_{1}}>\beta_{l_{1}+1} \geq \ldots \geq \beta_{m}$, , we define $\eta=\eta(A)$ by

$$
\begin{align*}
\eta(A) & =\left(n(n-2)\left|S^{n-1}\right|\right)^{\frac{2 \beta_{1}^{*}}{n-2}}\left(\frac{n(n-2)}{K\left(q_{1}\right)}\right)^{\frac{\beta_{1}^{*}-n}{2}} \\
& \sum_{j=2}^{l_{1}}\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{-\left(1+\frac{(n+2) \beta_{1}^{*}}{2(n-2)}\right)}\left|b_{j}\right|^{1-\frac{2 \beta_{1}^{*}}{n-2}}\left|q_{1}-q_{j}\right|^{2-n} . \tag{10.12}
\end{align*}
$$

For $A=\left\{q_{1}, \ldots, q_{l}, \ldots, q_{m}\right\}$ of case (ii), we associate with a $l \times l$ matrix $\eta_{i j}(A)$:

$$
\eta_{j k}(A)=\left\{\begin{array}{cc}
\left|b_{j}\right|\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n}{2}} & \text { if } j=k \tag{10.13}\\
-n(n-2)\left|S^{n-2}\right|\left(\frac{n(n-2)}{K\left(q_{j}\right)}\right)^{\frac{n-2}{4}} & \\
\cdot\left(\frac{n(n-2)}{K\left(q_{k}\right)}\right)^{\frac{n-2}{4}}\left|q_{j}-q_{k}\right|^{-n+2} & \text { if } j \neq k
\end{array}\right.
$$

Now we can state our main theorem.
Theorem 10.3. Assume that K satisfies $(\mathrm{K} 0) \sim(\mathrm{K} 1)$ with $\beta_{j}>$ $\frac{n-2}{2}$ for any $q_{j} \in \Gamma^{-}$. For any admisible set A, assume $\eta(A) \neq 1$ for
case (i) and the first eigenvalue of $\eta(A)$ is not zero for case (ii). Then there is a constant $c>0$ such that for any solution w of Equation (1.1),

$$
c^{-1} \leq w(p) \leq c
$$

holds for any $p \in S^{n}$.
Proof. Suppose $u_{i}(x)$ blows up at some point. Let

$$
A=\left\{q_{1}, \ldots, q_{l}, \ldots, q_{m}\right\}
$$

be the blowup set of u_{i}. Two cases are discussed separately.
Case 1. If $l=1$, by (10.7), we can solve $M_{i, j}^{-1}$ in term of $M_{i, 1}^{-1}$ for $2 \leq j \leq l_{1}$, and substitute it into (10.6). If $\beta_{1}=n$, then the additional term $\log M_{i, 1}$ makes two sides of (10.6) unbalanced. Thus, $\beta_{1} \neq n$. Also, it is easy to see that the exponent of $M_{i, 1}^{-1}$ of the right hand side of (10.6) is equal to $1+\left(\frac{2 \beta_{2}}{n-2}-1\right)^{-1}$. Hence, we have

$$
\begin{equation*}
\frac{2 \beta_{1}^{*}}{n-2}=1+\frac{1}{\frac{2 \beta_{2}}{n-2}-1} \tag{10.14}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{1}{\beta_{1}^{*}}+\frac{1}{\beta_{2}}=\frac{2}{n-2} \tag{10.15}
\end{equation*}
$$

Then A is admissible. Applying equality (10.14) and comparing the coefficients of both sides of (10.6) with each other, we have

$$
\eta=1+o(1)
$$

where η is given by (10.12) with $A=\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$.
Case 2. $l \geq 2$. Since $\lim _{i \rightarrow+\infty} \frac{M_{i, 1}}{M_{i, j}}=\lambda_{j}>0$ for $1 \leq j \leq l$, by (10.8), we have

$$
\sum_{k=1}^{l} \eta_{j k} \lambda_{k}=0
$$

where $\eta_{j k}$ is given by (10.13) and $A=\left\{q_{1}, \ldots, q_{l}, \ldots, q_{m}\right\}$. Therefore, the first eigenvalue of $\left(\eta_{j k}\right)$ is equal to 0 .

Since both cases yield a contradiction to the assumptions, the apriori bound is established. q.e.d.

We note that the assumptions of Theorem 1.1 imply there exist no admissible subsets of Γ^{-}. Hence, Theorem 1.1 is special case of Theorem 10.3. The asymptotic formulas (10.6) ~ (10.9) will be very helpful when we come to compute the degree for the nonlinear Equation (1.1).

References

[1] T. Aubin, Équations différentielles non lineéaries et probléme de yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976) 269-296.
[2] A. Bahri, An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension, Duke Math. J. 81 (1996) 323-466.
[3] A. Bahri \& J. M. Coron, The scalar curvature problem on standard three-dimensional sphere, J. Func. Anal. 95 (1991) 106-172.
[4] L. Caffarelli, B. Gidas \& J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271-297.
[5] S. Y. Chang, M. J. Gursky \& P. Yang, The scalar curvature equation on 2- and 3-sphere, Calculus of Variations and PDE's 1 (1993) 205-229.
[6] S. Y. Chang \& P. Yang, A perturbation result in prescribing scalar curvature on S^{n}, Duke Math. J. 64 (1991) 27-69; Addendum 71 (1993) 333-335.
[7] C. C. Chen \& C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J. 78 (1995) 315-334.
[8] , Estimates of the conformal scalar curvature equation via the method of moving plane, Comm. Pure Appl. Math. 50 (1997) 971-1017.
[9] , Estimates of the conformal scalar curvature equation via the method of moving planes. II, J. Differential Geom. 49 (1998) 115-178.
[10] , Prescribing the scalar curvature on S^{n}, Part II: On the degree counting formulas.
[11] , Blowing up with infinite energy of conformal metrics on S^{n}, Comm. in PDE, 24 5\&6 (1999) 785-800.
[12] J. Escobar \& R. Schoen, Conformal metrics with presicbed scalar curvature, Invent. Math. 86 (1986) 243-254.
[13] B. Gidas, W. M. Ni \& L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^{n}, Math Anal. Appl., Part A, Adv. in Math. Suppl. Stud. 7a, Academic Press, New York-London, 1981, 369-402.
[14] J. Lee \& T. Yarker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987) 233-272.
[15] Y. Y. Li, Prescribing scalar curvature on S^{n} and related problems, Part I, J. Differential Equation 120 (1995) 319-410.
[16] _, Prescribing scalar curvature on S^{n} and related problems, Part II: existence and compactness, Comm. Pure Appl. Math. 49 (1996) 541-579.
[17] C. S. Lin, On Liouville theorem and apriori estimates for the scalar curvature equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 27 (1998) 107-130.
[18] , Estimates of the scalar curvature equation via the method of moving planes. III, Comm. Pure Appl. Math. 53 (2000) 611-646.
[19] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984) 479-495.
[20] _, On the number of constant scalar curvature metrics in a conformal class, Differential Geometry: A symposium in honor of Manfredo Do Carmo (H. B. Lawson and K. Tenenblat eds.), Wiley, 1991, 311-320.
[21] R. Schoen \& D. Zhang, Prescribed scalar curvature on the n-sphere, Calulus of Variations and PDE's 4 (1996) 1-25.
[22] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Cl. Sci 22 (1968) 265-274.

National Taiwan University, Taiwan
National Chung Cheng University, Taiwan

[^0]: Received October 9, 2000.

